S3 Control Unit User Guide

Copyright

© Copyright P Dahl Elektronik \& Data AB 2009-All rights reserved

Disclaimer

No part of this document may be reproduced in any form without the written permission of the copyright owner.

The contents of this document are subject to revision without notice due continued progress in methology, design and manufacturing. P Dahl Elektronik \& Data $A B$ shall have no liability for any error or damage of any kind resulting from the use of this document.

1 Contents 2
2 Preparations 4
2.1 Reading this manual 4
2.2 Handling the Hardware 4
2.3 Installation 4
2.4 Service and maintenance 4
2.5 S3 Type Designation 5
3 Introduction 6
3.1 Base functions 6
3.1.1 Starting and stopping 6
3.1.2 Normal Operation. 6
3.1.3 Maintenance Running 6
3.1.4 Priority 6
3.2 Parameter Fault 7
4.1 S3 Front Layout 8
6 Hardware 10
6.1 Power Supply 10
6.2 Real-time Clock/Statistics 10
6.3 COP - Function Check 10
6.4 Jumper Settings 10
6.4.1 CAN-bus Jumpers 10
6.4.2 Programming Jumpers 11
7 S3 Multiplex Operation 12
7.1 Key Functions 12
7.2 Menu System. 13
7.3 Navigating the Menu 14
7.4 Menu System 15
7.5 Parameters 15
8 Basic Setup 16
8.1 Control System 16
9 Positioning 17
9.1 Positioning 17
9.2 Positioning Ports 18
9.3 Positioning with Flag Counting. 18
9.3.1 Flag Length 18
9.3.2 Flag Distance 18
9.3.3 Floor position 19
9.3.4 Position Limits 20
9.3.5 Floor Control 20
9.3.7 Slowdown 21
9.3.8 Setting up an Lift with Adjacent Floors. 21
9.4 Positioning with Incremental Encoder 22
9.4.1 Synchronization and Slowdown 22
9.4.2 Installation of Incremental Encoder Lift System 22
10 Start Sequence 24
10.1 General 24
10.2 Start Values 24
10.3 Delay 25
10.4 Quick Start 25
11 Safety and Protection 26
11.1 Control 26
11.2 Contactor Control 26
11.3 Travel Time 26
11.4 Phase Detection 27
11.5 Temperature 27
11.6 Service Counter 27
11.7 Fan Lift Motor 27
11.8 External Fault Input 28
11.9 Pawl Device (Hydraulic Lifts) 28
11.10 External Unit A/B 29
11.11 Supervision 30
11.11.1 Out of Service Alarm 30
11.11.2 Monitoring 30
12 Special Travels 31
12.1 Sending 31
12.2 Landing off 31
12.3 Fireservice 32
12.4 Fireman Service 32
12.5 Power Failure 32
12.6 Keylock 33
12.7 Priority 33
13 Zone Systems and Doors 34
13.1 Zone System 34
13.1.1 Zone System with Flag Counting 34
13.1.2 Zone System with Incremental Encoder 34
13.1.3 Risk Analysis 35
13.1.4 Door Zone 35
13.2 Levelling 35
13.2.1 Relevelling with Incremental Encoder 36
13.3 Door Contro 36
13.3.1 Door I/O Ports 36
13.3.2 General 37
13.3.3 Side A/B 38
13.3.4 Cabindoor 39
13.3.5 Cabin Doors 40
14 Lift in Group 41
14.1 Description of Lift Selection 42
14.2 Fault Handling 42
15 Indicators 43
15.1 Travel Arrows 43
15.2 Arrival Signal 43
15.3 Occupied 43
15.4 Floor Indicator 44
15.4.1 General 44
15.4.2 Side A/B Binary 44
15.4.3 Side A/B Text (CAN Bus) 44
15.4.4 S3-DF03 (CAN Bus) 44
16 45
16.1 CAN Port Connected Devices. 45
16.2 Function Inputs 46
16.3 Function Outputs 47
17 Tools and Debugging 48
17.1 History 48
17.1.1 Fault types. 48
17.2 Event List 49
17.3 Start Conditions 50
17.4 Door Status 50
17.4.1 Status 51
17.4.2 Floor Count. 51
17.4.3 Landings 51
17.5 Tools 51
17.5.1 Auto Tuning 51
17.5.2 Pendulate 52
17.5.3 Send Lift 52
17.5.4 Show Direction 52
17.5.5 Encoder 52
17.5.6 KEB. 52
18 Preferences and Passwords 53
19 System 54
19.1 Erase memory 54
19.2 Update memory 54
19.3 Copy memory 54
19.4 Explore memory 54
19.5 Hardware 55
19.6 Software 56
20 Other Menu Functions 57
20.1 Reset. 57
20.2 Language 57
20.3 Help 57
20.4 Monitoring Safety Circuit 57
20.4.1 Inspection 57
20.4.2 Door Circuits and Safety Circuits 57
20.4.3 Definitive Stop 57
20.5 Overload/Full Load 58
20.5.1 Overload (OL) 58
20.5.2 Full Load (FL) 58
20.6 Photocell Monitoring (FC1-4). 58
20.6.1 Function 58
20.6.2 Security 58
21 Software Operations 59
21.1 Updating the S3 Software 59
21.2 Copying Parameters between S3 Control Units60
22 CAN Bus 61
22.1 Controller Area Network (CAN) 61
22.2 CAN-Bus Devices 61
22.2.1 CAN Connectors 61
22.2.2 CAN01 CAN-Bus Repeater 61
22.3 Replacing a CAN-Bus Device 63
22.4 Adding a new CAN-Bus Device 63
22.4.1 Programming a Button (S4-PB05) 63
22.4.2 Programming an I/O-card (S4-IO8) 63
22.4.3 Programming a Floor Indicator (S3-DF03,S3-DF04, S4-MIO2, S4-MIO3).63
23 Parameter List 64
24 Standards and Technical Data 75
24.1 EMC 75
24.2 Temperature 75
24.3 Mechanics 75
24.4 Environmental Requirements 75
24.5 Standards 75
24.6 Power Supply 76
24.7 Data Inputs 76
24.8 Data Outputs 76
24.9 Dimensions 77
25 Index 78
26 Appendix 79
26.1 Telephone modem TD22. 79

2
 Preparations

2.1 Reading this manual

This manual is intended for lift technicians setting up a lift system controlled by the S3 Control Unit. Good knowledge of lift installation is required as is professional knowledge of electrical installation. The manual covers the general instruction for setting up the S3 for any system.

Only basic information is included for how to install peripheral equipment.

2.2 Handling the Hardware

The system has been tested according to lift standards EN12015 and EN12016 so they fulfill the requirements imposed on a safety product, i.e. the highest level of requirements. On connection blocks and panels, the ESD can handle up to 15 kV air discharge and 8 kV contact discharge. On signals and power cables, the ESD can handle up to 4 kV (burst).

2.3 Installation

The S3 should be mounted with six M4 spacer bolts type $M 4 \times 15 \mathrm{~mm}$, M $4 \times 20 \mathrm{~mm}$ or $\mathrm{M} 4 \times 25 \mathrm{~mm}$. After fitting and connection of all its functions, the system is programmed.

2.4 Service and maintenance

The control system has no parts that require changing at regular intervals. It should be ensured that no moisture or similar collects in the S3. When servicing the lift, check that the trigger circuits for small pit and headroom are working, the function is tested by emergency opening the doors.

2.5

 S3 Type Designation
S3- X X X X S X

- Type of Display - IO Configuration
- Relay Configuration - Safety Circuit - Main Voltage Supply

0 No CAN-Bus 1 CAN 1 2 CAN 2 3 CAN 1 and 2 I Incremental Decoder System P Flag System

S Large Display
0 I11-118, O11-O18
1 I11-I18, O11-O18, B11-B18
2 I11-I18, O11-O18, B11-B28
3 I11-I18, O11-O18, B11-B38
6 I11-I18, O11-O18, B11-B38 x 2
A RE1-RE6, RE11-RE13
B RE1-RE6, RE11-RE15
C RE1-RE13
D RE1-RE15
1 24VAC
2 48VAC
3 60VAC
4 100-130VAC
5 220-240VAC
2 230VAC
4 420VAC

The S3 system with software Multiplex 2.x is based on a Motorola processor. The hardware is specially produced to give good economy for both simple and complex lift systems. The hardware is available in a number of versions to meet different requirements. The software is written in C and is event-controlled. This ensures fast response times and good function in a distributed environment.

The system has many different built-in functions. For example the number of floors can be specified, whether the lift is direct or group-controlled, door times etc. These settings are stored in the computers memory. The parameters are stored in a non-volatile memory, which means that no power is required to retain the parameter values.

3.1 Base functions

3.1.1 Starting and stopping

When the lift is stopped in normal operation, the automatic door system, safety circuit, sending system and overload are activated. The floor counter is inactive during stops but a floor flag must be detected at the stop or the system will indicate an error. On its next journey the lift will not stop until the lift reaches an end position and the Limit Down (LD) or Limit Up (LU) counters will be reset.

For the lift to start, the safety circuit must be closed, the door times expired and the lift must not be overloaded. When all conditions a re fulfilled the lift starts when the start time has elapsed. The start time only delays the start to prevent the retiring cam etc. from activating too early. For more information see "17.3 Start Conditions" on page 50.

3.1.2 Normal Operation

When the lift is running, the safety circuit, run time high speed (P 521) or low speed (P 522), contactor control, full load, floor counter and door monitoring are activated.

3.1.3 Maintenance Running

To activate inspection running, set input MT low. During inspection running the floor counter is not active. Input signals for inspection are Limit Down (LD), Limit Up (LU), pulse down (PD), door opening (DOLA1), safety circuits and input signals for the direction concerned. The direction is given with the two-bottom car destinations where down is floor 1 and up floor 2 . The output signals are retiring cam (RC), occupied light, motor and door control. Door control works on the dead man's handle principle during inspection running. Start options inspection running is used for inspection running, see Start Value.

IMPORTANT!
For lifts with automatic doors, the doors can be opened with the door button between floors

3.1.4 Priority

Falling priority
Maintenance run
Top priority
Overload
Blocked
Fireman running
Fire running
Prioritized running
Run from button set S3
Shut down external buttons
Full load (not available for further call)
Normal running/shuttle

Lowest priority

$3.2 \quad$ Parameter Fault

When a new lift control is first commissioned, no parameters are set. When the system is started, the parameters are checked (always done when the power is connected), if the test is unsuccessful the display shows "Parameter fault!". The software cannot start and must be reset by running \System\Erase Memory.

4.1 S3 Front Layout

Number	Connector	Port/Pin/Nbr	Description
1	P5	SN	OV Safety Circuit
		S1	Safety Circuit Motor Protection Input
		S2	Safety Circuit Emergency Connection Input
		S3	Safety Circuit Door Contact
		S4	Safety Circuit Photocell Curtain Input
		S5	Safety Circuit
2	P6	IP1 1-2	Input 1 Latent Open Connection
		IP2 1-2	Input 2 Latent Open Connection
3	COM1		D-Sub RS232
4	P7	T1	Input 1 for Supervision of Temperature and other Alarms
		T2	Input 2 for Supervision of Temperature and other Alarms
		T3	Input 3 for Supervision of Temperature and other Alarms
5	CAN1	OV	OV CAN Bus
		+24V	+24V CAN Bus
		C11	Data Channel 1
		C12	Data Channel 2
6		JC1	CAN1 Termination Jumper
		JC2	CAN2 Termination Jumper
7	CAN2	OV	OV CAN Bus
		+24V	+24V CAN Bus
		C11	Data Channel 1
		C12	Data Channel 2
8	P8	RE13 1-2	Connection for RE13
		RE13 3-4	Connection for RE13
9	F1/F2	F1/0V	OV Fan Connection
		F2	+24V Fan Connection
10		OV	OV for Incremental Encoder
		+24V	+24V for Incremental Encoder
		P1	Input for Pulse Down/Incremental Channel A
		P2	Input for Pulse Up/Incremental Channel B
		P3	Input for Limit Down
		P4	Input for Limit Up
11	P9	RE7 1-2	Connection for RE7
		RE8 1-2	Connection for RE8
		RE9 1-2	Connection for RE9
		RE10 1-2	Connection for RE10
		RE11 1-2	Connection for RE11
		RE12 1-2	Connection for RE12
12		RE16 1-2	Connection for RE16 (Connected when P3 is high)
		RE17 1-2	Connection for RE17 (Connected when P4 is high)
13		$\begin{aligned} & +24 \mathrm{~V} \\ & +24 \mathrm{~V} \text { Fused } \end{aligned}$	Power Supply Indicator before PTC resistor Power Supply Indicator after PTC resistor
14		B31-B38	Digital I/O 24VDC for Car Floor Calls
15	P4	RE1 1-2	Connection for RE1
		RE2 1-2	Connection for RE2
		RE3 1-2	Connection for RE3
		RE4 1-2	Connection for RE4
		RE5 1-2	Connection for RE5
		RE6 1-2	Connection for RE6
16		B21-B28	Digital I/O 24VDC for Car Floor Calls
17	P3	RE14 1-2	Connection for RE14 (Safety Relay Slot)
		2	Common for RE14 and RE15
		RE15 3-2	Connection for RE15
18		B11-B18	Digital I/O 24VDC for Car Floor Calls
19	P2	Z1 ${ }^{\text {Z }} 3$	Zone System Inputs
20		O11-O18	Digital Outputs PNP 24VDC
21	P1	$1 \leftrightarrow 24 \mathrm{~V}$	1-2: Input 19VAC/0V-24V; 1-2: Output 24VDC
22		I11-I18	Digital Inputs PNP 24VDC
23	LINE1	$\mathrm{PE} \leftrightarrow \mathrm{N}$	Current $2 \times 230 \mathrm{~V} / 3 \times 230 \mathrm{~V} / 3 \times 400 \mathrm{~V}$ (+ ground)
24		+5V CPU	CPU Voltage Indicator
		+5V COM	COM Voltage Indicator
25	Front Panel		
26	S3-UD03		
27	S3-KR01		

The hardware is based on the 16-bit processor MC68HC812A4, flash memory, RAM memory, real time clock, dedicated processors for graphics, communication and positioning and IO units. In total the S3 can be fitted with five processors.

$6.1 \quad$ Power Supply

The system has three separate power units. One power unit for the processor, CPU (5VDC), one for communication (5VDC) and one for I/O (24VDC). The CPU and communication units are supplied from a three-phase transformer. The system measures the voltage and the phase angle. There are no fuses that require changing in the system. All fuses take the form of PTC resistors. The PTC resistor for 24 VDC is indicated on the short right-hand side of the base card. Here there are two yellow LED's as indicators before and after the PTC resistor - marked +24 V , fused +24 V . Both should be on in normal operation. On the short left-hand side there are also two yellow LEDs. One LED for voltage for the communication port COM1 and one LED for the processor. These should be on in normal operation.

Figure 6.1 Voltage indicators

6.2
 Real-time Clock/Statistics

The real-time clock keeps track of the date and time. The real-time clock and statistics memory are in operation even if the power is disconnected for several days, during which power is supplied by a capacitor.

6.3 COP - Function Check

The computer has an LED that indicates whether the computer is running, as it should and whether the software has discovered any fault. Normally the COP LED flashes at the rate of 1 Hz .

6.4 Jumper Settings

6.4.1 CAN-bus Jumpers

The system has two CAN buses. Each CAN bus has a jumper for enabling the bus end resistor. The Jumper JC1 controls CAN1 and JC2 controls CAN2. The location for the jumpers is between the CAN bus connectors. The jumper shall be in ON position if the computer is the last node on the bus.

6.4.2 Programming Jumpers

During Software upgrade the system has to be set to programming mode. This is established through the E3 jumper. See the Updating Software section for instructions how to upgrade the S3 Multiplex software.

7.1 Key Functions

Figure 7.1 S3 Panel

- Leave menus
- Cancel changes.
- Move down in menu
- Reduce value of parameters etc
- Enter password (0)

7.2
 Menu System

Figure 7.2 S3 Menu

1 The question mark in front of the option means that there is help text available for the option. Press the Key with a question mark to display help text.
2 The current floor of the lift and available directions. For lift in motion the direction of the lift is displayed with an arrow (encoder only).
3 An asterisk after a parameter indicates that the parameter has been changed from the default value.

4 Symbol indicates if lift parameters are password protected.
5 Symbol indicates if system parameters are password protected.

7.3 Navigating the Menu

Figure 7.3 Menu Structure
The S3 has an easy-to-use menu system combined with a large number of options that enables you to set up the lift system of your choice.

To be able to handle the several hundreds of parameters the system is at places divided into as many as six levels. Navigation is done by using the panel keys as described in Key Functions section and as the figure above describes navigation is quite simple.

The highest level of the menu system is where you set the parameter and parameters can be set in several ways:

Starttime S3 ? 00.0 s

Figure 7.4 Predefined options
Options are set by selecting the desired option. Selected options are checked.

Figure 7.5 Setting numeric values

Options are set by using the left/right button to select which value to set and the up/down button to increase/decrease the value.

Figure 7.6 Setting alphanumeric values

Options are set by using the left/right button to select what letter to set and the up/down button to increase/decrease browse between letters.

7.4 Menu System

Parameters	Controlsystems	Preferences	Doubleclick
	Positioning		Clock
	Startsequence		Buzzer
	Protection		Screensaver
	Supervision		Screen light
	Specialtravels	Password	Programming
	Level./Doors		Safety
	Lift in group Indicators	System	System techn. Erase memory
	Ports	System	Update memory
Debugging	History		Copy memory
	Eventlist		Explore memory
	Start Conditions		Hardware
	Door Status		Software
	Status	Reset	
	Floorcount		
	Landings	Language	
Tools	Auto tuning		
	Pendulate	Help	Help
	Send Lift		About
	Show direction		
	Encoder		
	KEB		

Figure 7.7 S3 Multi-
plex Menu System
This section covers the menu system of the S3 Multiplex and is structured the same way as the menu system.

7.5
 Parameters

In this user guide, parameters are referenced to using P nnn, where nnn is the number of the parameter.

For a complete list of parameters, see the Parameter List section.
Parameters are listed at the end of each sub section with options where applicable, default values are written in italics.

Below is a list of symbols used in the parameter lists. The symbols display the input type used to set the value of the parameter.

Symbol	Meaning
α	Alphanumeric value
${ }_{101}^{9100}$	Binary value
\#	Numeric value
(1)	Time in seconds

8.1 Control System (Parameter 100-112)

The basic features of the lift is set in the Control System section, such as number of floors, system type and a number of other control functions.

Note:

Car time and landing time (P102 and P103) is controlled by door times if lift is fitted with automatic doors.

Parameters		
100	Systemtype	Not collective, PB/Landing queue, Oneway collective, Twoway collective
101	Floors	$2 . .32$
102	Car time	©
103	Landing time	©
110	Carfantime	©
111	At travel	On, Off
112	Car light time	©

System type (P100)

Not collective	No queue is possible, the first landing button pressed when the lift is unoccupied is chosen. Car calls are prioritized.
PB/Landing queue	Landing calls are placed in queue and processed in the order they are received. Car calls are prioritized.
Oneway collective	Lift stops on each called floor and cancels the current floor call when the lift stops. The lift stops on every floor and it is not possible to chose direction with the landing button.
Twoway collective	It is possible to select direction on each non end floor and lift will stop on landing calls from each floor in its direction.

Floors (P101)

The number of floors is given by P101 and can be set from 2 to 32 . The floor number also includes concealed floors.

Car time and Landing time (P102 and P103)

There are two different adjustable stop times, one for car signals and one for landing signals (P102, P103). If the lift stops only for the car signal, the time for the car signal is used, otherwise the time for the landing signal is used. To allow a new passenger to continue in the lift direction, the lift does not change direction during the stop time.

Note:

For lifts with automatic doors, the stop time is controlled primarily by the door times. The stop time is used to control the change in running direction.

Car fan time (P110)

The time the car fan is active after the lift is in inactive state is set with P110.

At travel (P111)

Turns on/off the car fan.

Car light (P112)

The time the car light is on after the lift is in inactive state is set with P112.

9 Positioning

9.1 Positioning
 (Parameter 150-369)

Positioning of the lift can be done in two different ways, either by using flag counting or by using an incremental encoder.

Flags is a more traditional way of lift positioning where flags are positioned in the shaft to indicate "action points" where changes to the operation of the lift should occur, i.e. slowdown, floor stops, floor counting, door opening etc. The flags are read with photocells fitted on the car and signals are sent back to the control unit. The actions performed when a certain flag is reached are then programmed into the appropriate parameter of the S3.

The incremental encoder allows for a more high precision positioning by using a belt fitted to the shaft and the car. When the car is running the belt run through a wheel of the encoder, which then read the exact position of the car. The position is then programmed to the appropriate action point. The Tools/Encoder menu includes a number of tools used when setting the position of the lift.

Figure 9.1 Lift Positioning
The incremental encoder reads the exact position of the lift regardless of direction.
A flag counting system uses photocells to count flags positioned in the shaft. P1 counts flags when the lift moves down and P2 counts flags when the lift moves up.
P3 and P4 are limit switches that keep track of the end in each direction for both incremental and flag counting systems. P3 keeps track of the first floor and P4 keeps track of the last floor. The limit switches also handles slowdown for the first and last floor.

$9.2 \quad$ Positioning Ports

Below is a table showing what ports are used to connect PD (Pulse Down), PU (Pulse Up), LD (Limit Down), LU (Limit Up), Incremental Channel A and Incremental Channel B.

Plag Counting	Incremental	
P2	PD	PU
P3	LD	Inc Channel A Channel B
P4	LU	LD
		LU

9.3 Positioning with Flag Counting

The floor counter is controlled by four signals, upper limit LU (Limit Up), lower limit LD (Limit Down), pulse up (PU) and pulse down (PD). The limit signals set the values for the various counters at the end floors, therefore there should be no slow-down flags at the end floor.

Upper limit counter and lower limit counter are active in both upward and downward travel. The pulse signals are always active (even during maintenance). On stop, the flags must be received in a predetermined order. Normally the system is programmed so that when the lift stops on upward running, the down flag is found first and on downward running the up flag first. If reversed, P153 must be changed to reversed.

The system has three counters, two flag counters and a floor counter. On upward running the lift uses the flag counter for upward running and the equivalent for downward running. The two flag counters count the flags independently in both directions, but the system uses their values only for the direction concerned. When the lift is running normally the values of the flag counters for the current direction are compared with the floor position for the floor that the lift is approaching. When the flag counter receives the value for the next floor slow-down position, a change of floor counter occurs.

On miscounting by any flag counter, the system cannot find the next floor slow-down position, so no change of floor counter occurs but the lift goes to an end floor to reset itself, then a restart is made to the floor to which the lift was travelling. The system allows setting of adjustment of the flags for the floor concerned but it is also possible to set three different options for slow down. Start can take place in three ways e.g. start at low, medium or high speed, alternatively it can be programmed so that at the next floor, the distance between the floors can be taken into account. The system allows the setting of 255 flags in each direction and slow-down can take place on a maximum 15 flags within a floor.

9.3.1 Flag Length

The computer reads the inputs every 10 ms . For the signal to be regarded as low or high, the computer must read the same value twice in succession. This means that the computer does not react to a signal of less than 10 ms . A signal must be longer than or equal to 20 ms for a secure reading. Signals in the range 10 to 20 ms will be interpreted at random by the computer. The flag length together with the pulse sensors will not give signals longer than 20 ms in all situations. The inputs are programmable; the reaction time can be increased but not reduced. See the table below for ratio between speed and flag length.

Speed m/s	Length mm
0.5 s	>10
$1 \mathrm{~m} / \mathrm{s}$	>20
$1.6 \mathrm{~m} / \mathrm{s}$	>32
$2.0 \mathrm{~m} / \mathrm{s}$	>40

9.3.2 Flag Distance

It's important to consider stop speed when placing flags in the shaft. Below is a table showing recommended stop speeds depending on lift system used. The distance shown is recommended minimum distance from slow down to full stop.

For lifts with Zone System (automatic levelling), the Zone System is initiated when the lift exits the stop flag. There need to be at least 100 ms between the end of the Zone flag to the end of the stop flag for the levelling to function.

For more information about Zone System, see "Zone System and Doors" on page 34.

Figure 9.2 Flag Distance

Speed \mathbf{m} / \mathbf{s}	Variable Speed	Two Speed	Hydraulic
	Stop Distance in m		
0,3		0,30	0,30
0,5	0,65	0,50	0,50
0,6	0,80	0,60	0,60
0,7	0,95	0,70	0,70
0,8	1,10	0,80	0,80
0,9	1,25	0,9	0,9
1,0	1,35	1,00	1,00
1,2	1,60		
1,4	1,85		
1,6	2,10		

9.3.3 Floor position

(Parameter 200-263)
Positions are set by entering the flag number to the appropriate floor into P200-P231 for Floor Position Down and into P232-P263 for Floor Position Up. Floor positions are counted starting from zero at the first floor.

Figure 9.3 Example Floor Position The position of the floor is set by entering the number of the flag at the floors parameter. Flag number is entered for both Upward (P2) and Downward (P1) running.

Parameters		
200-231	Position Down	Floor 1 - Floor 32
$232-263$	Position Up	Floor 1 - Floor 32

9.3.4 Position Limits
 (Parameter 151-153)

P151 and P152 set the position for the limit paths, which are given in the same way as the floor positions. When LD or LU is activated, the value from P151 and P152 is read into the flag counter and the floor counter is adjusted. When LD or LU is activated, the value is read again but corrected by 1 so that it agrees with the value which the counters had before LD or LU were activated.

LD is usually set to 0 and LU is usually set to highest flagnumber (which is usually the number of flags used in one direction).

Parameters	
151	LD Pos Up
\#	
152	LU Pos Down
\#	
153	Flaginst.

9.3.5 Floor Control
 (Parameter 264-295)

Floor control parameters describe how the lift will start if the lift has an adjacent floor. Usually normal slow down is used, P264-P295=00 0000 00, but with floor control parameters the system can be controlled to use medium or low speed to the adjacent floor.

Figure 9.4 Adjacent Floors
P264-P295 sets how the lift will start if the floor has adjacent floors. The figure describes how the binary values of P264P295 control the lift. Default value is set to 000000 - no adjacent floor.
The figure describes how the binary values of the parameters are used. The sequence is divided into four pairs as shown in the figure. The first number indicate if there is an adjacent floor and the second number indicate the speed the lift will use to travel to the adjecent floor from the selected floor.

Parameters

264-295 Position Control (Floor 1 - Floor 32)

9.3.6

9.3.7

Slowdown

(Parameter 296-359)

To control when the speed of the lift will change from high to low speed, the P296-P359 is used. The value set in these parameters is the number of flags before a floor flag that the speed will change to low.

Normally the parameters P296-P327 are used, but depending of the values set for the floor control parameters (see Floor Control (P264-P295)) the value P328-P335 can also be used.

P296-327 should be programmed to 11 for a two-speed lift, i.e. lift slows down 1 flag before the stop on upward and downward running, 00 for a one-speed lift (slow down and stop at the same flag).

Figure 9.5 Slowdown

Show how the values of P296-359 are used. First value (pos 0) sets the number of flags for upward running before change of speed second value (pos 1) sets the number of flags for downward running before change of speed.

Parameters

296-327	Slowdown Medium	Floor 1 - Floor 32	\#
328-359	Slowdown High	Floor 1-Floor 32	\#

9.3.8 Setting up an Lift with Adjacent Floors

This example show how a lift with adjacent floors is set up:

| P3 P1 | Figure 9.6 Setting up Adjacent Floors
 The figure show a lift with 4 floors where
 floor 2 and 3 is adjacent. The parameters
 should be filled in like this: |
| :--- | :--- | :--- |
| Position Limits | |
| P152 | |

$9.4 \quad$ Positioning with Incremental Encoder

The incremental encoder uses a belt running through a sensor to read the position of the lift. The encoder reads pulses from the sensor and translates them into distance with the help of the lift speed and a number of calibrating tools. The position of each floor is set in mm with P200-P231.

Parameters
200-231 Position Down Floor 1 - Floor $32 \quad$ \#

9.4.1 Synchronization and Slowdown
 (Parameter 154-160)

To keep the incremental encoder synchronized a zero position need to be set up. The zero position is usually the LD position and is read by the Limit Down Input (P3), but a second path can be installed before the LD position if the bottom floor is rarely used and no synchronization is performed.

Synchronization is set in mm with P154. If synchronization is the same as LD, P155 is set to Sync. /Slowdown, and if a second path is used to synchronize the incremental encoder, P155 is set to Sync.

Slowdown with incremental encoder is set for all floors with parameters from the Parameters/ Positioning/General menu. The parameters concerns all floors rather than Flag Counting where slowdown is set for each floor individually.

Parameters		
154	Synchronization	\#
155	Synchronization Config.	Sync./Slowdown, Sync.
$\mathbf{1 5 6}$	Stop Low Down	\#
157	Stop Low Up	\#
158	Stop Medium	\#
159	Stop High	\#

9.4.2 Installation of Incremental Encoder Lift System

Below is a case for installation of a lift with incremental encoder. Menus refer to \Tools \backslash Encoder unless otherwise specified.

1. Preparation

If the lift is fitted with frequency converter, program this and run autotuning for the Inverter. Fit the paths and incremental encoder. Check that the encoder direction matches the lift direction (\Tools\Show direction).
2. Activate

Activate setting of incremental encoder by setting . . \Active to YES.

IMPORTANT!
When the function is activated and on inspection running in the car, limit relays are shut off in the upper and lower position i.e. you can run to limit switches. Slow speed time is shut down for easier setting of any frequency inverter and the lift always starts at slow speed within two seconds for easier setting of the floor.

3. Enter lift speed/s under . . \Preferences.

If the lift has no medium speed, set to $0.0 \mathrm{~m} / \mathrm{s}$.
Run calculate under .. \Settings \Calculate, computer calculates where the synchronisation path (LD) should be fitted in relation to the lowest floor. Adjust path.
4. Set lift to Normal running, restart the computer (i.e. shut down maintenance running).
5. Check that the lift has a relatively long creep section at the lower end position. If necessary adjust synchronisation path LD, enter the new value (P154).
6. Set lift to maintenance running (Inspection on computer, Normal on roof).
7. Program the position of each floor by travelling to each floor. At each floor, press the stop/door button at the same time as the current floor button. When floor position is stored the acknowledge lamp is lit for two seconds and the computer gives an audible signal.

Note:

All floors must have a positive position, if the floor has a negative position increase the value on P154, restart computer and reprogram the floor positions.
8. Set lift to Normal Running, restart the computer (i.e. stop maintenance running).
9. If the lift is fitted with frequency control (or other motor control which requires setting), set the frequency control between two intermediate floors. Run settings as accurately as possible. Change the slowdown parameters P158 and P159 if necessary.
10. Run the lift to the bottom floor, check stop fault.
11. Enter stop fault in . . \Sync.Pos.adjust $\backslash F l o o r ~ 1$ and run . . \backslash Sync.Pos.adjust \backslash Calculate, the computer now calculates how far the synchronisation path (or similar) must be moved,
12. Move path according to calculation.
13. Restart computer.
14. Run Stop adjustment, the computer checks the stop distances from creep running to stop. It runs to all floors up and down. When finished, the main value of the stop distances is calculated (S3 calculates the new value on P156 and P157).
15. Restart computer.
16. Check stop fault by running lift to each floor and noting the stop fault. Run to the bottom floor on downward running and all others on upward running.
17. Enter stop fault under . . \Floor setting \backslash Floor setting \backslash Floor N (where N is the floor) and run \Floor setting\Calculate (S3 calculates new value on P201-)
18. Restart computer.
19. Test run.

If the stop distance has changed (brakes have been adjusted or frequency converter reprogrammed), rerun Stop adjustment (step 14) and restart computer.

If stop positions still is incorrect, recheck stop fault, reenter corrected values and recalculate (see step 17). Restart computer.
20. Note down the values of the adjusted parameters in the parameter lists, P153-P158 and P201-

Tip:
If values for slow down and/or floor positions are known, these can be entered manually and the setting of these values can be omitted from the steplist (floor positions step 6-8 and .

This section describes how to set up the start procedure of the lift.

10.1

General

(Parameter 400-408)
P400 states which of the bits in the start sequences should be activated on downward running. P401 states which should be activated for upward running.

P403-P406 controls the feedback between the contactors (CC) and zero-servo (ZS).

Parameters			
400	Mask downwards	\#	
401	Mask upwards	\#	
402	Auto tuning	\#	
403	CC at start	Yes, No	If the start is shall wait for contactor control, CC
404	ZS at start	\#	If the start is shall wait for ZS
405	ZS at stop	\#	If stop is shall be shorten by ZS
406	ZS trigger		If ZS is flank- (if pulse at start and stop) or level- triggered (ZS goes high on start and low at stop).
407	Brake ctrl	Yes, No	Set up if the computer should wait for brake control.
408	Startseq.err.	Off, On	

10.2 Start Values

(Parameter 410-483)
The start values set which signal should be activated/deactivated when running the lift, irrespective of direction. The code is entered in binary form in the parameter concerned. The start sequence starts with every signal in OFF position. Each time a binary one is sent the signal changes from OFF to ON or from ON to OFF. This means that only changes are supplied.

Output	v7	v6	v5	v4	v3	v2	v1	v0
Byte	0	0	0	0	0	0	0	0
S3-KR03 Output	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1

Example: Start star/delta
RE1 $=v 0 \rightarrow$ Value Down
RE2 $=\mathrm{v} 1 \rightarrow$ Main Connector Up/Down
RE3 $=\mathrm{v} 2 \rightarrow$ High Speed
RE4 $=\mathrm{v} 3 \rightarrow$ Star Connector
RE5 $=\mathrm{v} 4 \rightarrow$ Delta Connector
40000000111
40100111110

410	00001111	Start step 1	V3-V0 activated, Start Star
411	1.0 s	Time 1	Wait 1s
412	00011000	Start step 2	V3 falls, V4 active, Star to Delta
413	0.0 s	Time 2	
414	00000000	Start step 3	
415	0.0 s	Time 3	
416	00000000	Start step 4	
417	00000100	Slow down value	V2 falls, lift slows down
418	00000000	Stop 1	
419	0.0 s	Time 1	
420	00000010	Stop 2, security	V1 falls, main contactor falls
421	0.5 s	Time 2	
422	00010001	Stop 3, Defstop	Wait 0.5s at VMP valve (supplied from Delta contactor
423	0.0 s	Time 3	

V0=Down, V1=Main contactor UP/DOWN, V2=High, V3=Star, V4=Delta

410－423	Start Values Highspeed	Floor 1 －Floor 32	關
430－443	Start Values Mediumspeed	Floor 1 －Floor 32	闆
450－463	Start Values Lowspeed	Floor 1 －Floor 32	ㅍㅐㅄㅄㅄㅄ
470－483	Start Values Maintenance	Floor 1 －Floor 32	闆

10.3 Delay

 （Parameter 490－491）The start delay is increased if the start procedure is too fast，e．g．if a door does not close fully before the retiring cam turns．The stop delay delays the stop flag so the lift runs further into the flag．

Parameters

490	Start	（1）
491	Stop	（1）

$10.4 \quad$ Quick Start

（Parameter 493－498）

The Quick start function make it possible to make a prestart of the main motor before the doors is fully closed．This is used for slower frequency converters that need a startup time．The quickstart sequence starts when the doors start to close，the sequence starts with a delay P494．When the delay time has passed，the quick start sequence starts with the start value P496 and it will be fully active after a time set with P495．If a reopening door command is recieved the Quick start is discarded．To discard the Quick start the computer uses the stop sequence parameters P497 and P498．If the Quick start sequence is successful it runs the normal start sequence（P410 etc）．

To avoid overheating the lift motor the quickstart is disabled if lift hasn＇t started after ten door openings．The lift will then start normally（with delay）once door is properly closed．

\left.| Parameters | | | |
| :--- | :--- | :--- | :--- |
| 493 | Active | Yes，No | |
| 494 | Delay | Delay from start of closing to start of quick start | |
| sequence | | | |$\right]$| Maximum time of quick start sequence．Time from |
| :--- | :--- | :--- |
| quick start sequence to normal start |$|$

This section covers safety and protection settings of the S3 control unit.

$11.1 \quad$ Control

(Parameter 500-503)

Start time S3 (Parameter 500)

The S3 need 1 s to start and this parameter adds time to computer start up. Slow starting external units might need more time to start and for the S3 to be able to detect all connected units at startup the time might need to be extended.
P500 default value is set to 0.0 s .

Safety Circuit Time (Parameter 501)

Delay the fault code ML (Maint Limit) normally programmed on S2 (Emergency Connection Input).

Delay of Retiring Cam (Parameter 502)

If the stop circuit in the car is activated (by car emergency stop button and/or photocell curtain) outside the normal stop zone, the retiring cam will be activated after a time specified with P502 time.

Blocking of Landing Buttons (Parameter 503)

Pressing the stop button can reset all landing calls. This parameter sets if reset can be made only when the lift is in travel or if it is always possible.

Parameters		
500	Starttime S3	(1)
501	Safetyc.time	(1)
502	Delay of RC	(1)
503	Block.fn	In travel, Always On

11.2 Contactor Control

(Parameter 510)
When contactor monitoring is activated, the lift does not start until the contactors have fallen. After the lift has started, the control checks whether the contactors are engaged. After an adjustable time (P510) normally 2.0 s , the check is performed. If the connectors are not engaged after the time elapsed, the lift interrupts the start procedure and a new attempt is begun. After ten failed start procedures all destinations and calls are reset. Contactor monitoring is also activated on maintenance running. If the contactor monitoring is broken during running, the stop sequence begins and a new start sequence is started after the minimum time for the stop.

Parameters

510 Time (1)

$11.3 \quad$ Travel Time

(Parameter 520-523)
The run time is calculated from when the lift starts (input for contactor monitoring goes high). The run time is adjustable between 0-999.9 s (P521) and is set to the time required for the lift between end positions plus 10 s but total not less 20 s . When the run time expires the lift stops. The lift remains stopped or resumes operation (P520). If P520 is set to Locked, the computer sends an alarm by flashing COP and buzzer.

If the lift has a step fault, there is a risk that the lift will be forced to creep long distances at low speed. If the lift has a very low speed in slow running, this can take a long time. To reduce the risk of this, the system has special low speed monitoring. After a positioning fault, the lift attempts to restart to the floor to which the lift was travelling (P522).

Parameters
520
Config
521
:---
523

11.4 Phase Detection
 (Parameter 530-533)

The phase monitor measures the voltage and angle asymmetry between the phases, and the phase sequence. The measured values are shown in \Debugging \backslash Status.

Parameters		
530	Phase monitor	Yes, No
531	Number of measurements	\#
532	Permitted voltage asymmetry in \%	\#
533	Permitted angle asymmetry in \%	\#

11.5 Temperature (Parameter 540-542)

S3 has a built-in thermometer that measures the temperature of the computer. At high temperature of the computer the computer activates the fan output. If the temperature rises further the lift is shut down.

Parameters				
540	Temperature monitor			
541	Lift on/off	Yes, No	542	Fan cabinet on/off
:---	:---			

11.6 Service Counter

(Parameter 545)
Sets the maximum number of lift starts until the next service occasion.
Parameters
545 Service counter \#

11.7 Fan Lift Motor

(Parameter 550/FAN)
The output is active as long as the lift is running and keep running for an additional time set by P550.
Parameters

550 Time	(1)

11.8 External Fault Input (Parameter 560-565/EXT1-3)

External fault inputs are used for connecting thermostats, monitoring frequency inverters etc. Each input can be configured to determine whether it should stop travel on upward or downward running. If the input is programmed not to interrupt running, it merely prevents a new start in the door zone.

Parameters Input 1	
560 Stop in travel	No, Downwards, Upwards, Down/Upwards
561 Config	Unlocked, Locked
Parameters Input 2	
562 Stop in travel	No, Downwards, Upwards, Down/Upwards
563 Config	Unlocked, Locked
Parameters Input 3	
564 Stop in travel	No, Downwards, Upwards, Down/Upwards
565 Config	Unlocked, Locked
Input	
EF1	
EF2	
EF3	

$11.9 \quad$ Pawl Device (Hydraulic Lifts)
 (Parameter 571-573/PD1-2)

To keep hydralic lifts levelled, a pawl device an be used. When the lift has reached a desired floor the pawl device is extended and stops the lift from sinking out of zone, and no relevelling is necessary. If the lift is resting at the pawl, the lift first has to ascend to release the lift from the pawl before the pawl can be retracted and allow downward travel.

There are three positions for the blocking device in relation to the pawl device: above the pawl, at the pawl and against the pawl. For the lift to start in all positions, a rerun function is built into the control system. To start the lift downwards the pawl must be in the open position before the start and on starting, the lift starts downward only after the computer has received acknowledgement that the blocking device has engaged. On rerunning start at medium speed is used.

Figure 11.1 Pawl Device

Above the Pawl Device

The contactor for lifting the block is engaged. When acknowledgement from the block is received, the lift starts downward. If there is no acknowledgement from the block and the lift is at a floor, i.e. on pulse up flag (flag counter) or in a floor zone (incremental encoder), the lift interrupts the start attempt and zeroes all destinations; if the lift is not at a floor it is interpreted as if the lift was positioned at the mark.

At the Pawl Device

The contactor for lifting the block is engaged (P571). The computer is waiting for acknowledgement, acknowledgement does not occur as the lift is standing at the mark. After two seconds (adjustable, P572) it starts up for rerunning. The lift stops at the nearest pulse up flag (flag counter) or in a floor zone (incremental encoder). The lift then stops to start downwards.

Against the Pawl Device

The lift starts immediately upwards to the next pulse up flag (flag counter) or in the floor zone (incremental encoder). The lift then stops to start downward.

571	Startmask	\% 4
572	Controltime	(1)
573	Park on pawl	Yes, No
Input		
PD1		
PD2		

11.10 External Unit A/B

(Parameter 575-578)

There are two identical external units, External Unit A and External Unit B. The purpose for the external units is to check a device, such as a speed governor solenoid or a photocell unit. The unit has one output to activate the device and two inputs to check the resting and active position of the device. P575/P577 set the action of the device if the device isn't working properly. If a delay of the release of the output is needed P576/P578 is used.

Parameters

575/577	Reaction	None, Car Emerg. Stop, Restart S3
$576 / 578$	Delay output	(1)

Input

EUA1
EUA2
EUB1
EUB2

Output
EUA
EUB

11.11

11.11.1

11.11.2 Monitoring

(Parameter 581-587)

The S3 can be connected to an operating sensor via a short-range modem, telephone modem or GSM modem.

Parameters

581	Doorc. superv	Yes, No
582	Close superv	Yes, No
583	Closingtime	$\boldsymbol{\emptyset}$
585	Supervision	No, Via COM1, Via CAN
586	Modem	None, GS-01 GSM Modem, TD-33 (Hayes)
587	Baudrate	$110 \rightarrow 38400$

12 Special Travels

12.1
12.2

Sending

(Parameter 591-596)
Automatic send can take place to any floor. The function handles two different sending floors. One input selects the floor at which the lift should park. If the input is low, the floor is selected according to P592, if the input is high P594 is selected. The send time is adjustable to $0-999.9 \mathrm{~s}$ (P591), the time is calculated from when the stop time elapses depending on any door opening or not (P596). The send time also cancels door-opening 4 (door opening at loading).

Parameters		
591	Time	Not Active, Floor $1 \rightarrow$ Floor 32
592	Destination 1	Not Active, Side A, Side B, Side A/B
593	Side A, B, A/B	Not Active, Floor $1 \rightarrow$ Floor 32
594	Destination 2	Not Active, Side A, Side B, Side A/B
595	Side A, B, A/B	
596	New time on door opening	Yes, No
Input		
PFL		

Landing off

(Parameter 600-606)
Landing off let you disconnect the external buttons. Disconnection of external buttons can be used for training, transport, prioritized running or just to stop the lift.

Parameters		
600	Input	Monostable, Bistable
601	Doors	Closed, Open on arrival, Park with open doors
602	Sending Time	Yes, No
603	Resend	Not Active, Floor 1 \rightarrow Floor 32
604	Destination	Not Active, Side A, Side B, Side A/B
605	Side	Yes, No
606	Landing open	

Input/Output

OFL

12.3 Fireservice

(Parameter 610-617)

If fire running is activated via input, the lift completes its last journey and starts to the selected floor. If the lift has stopped when the fire running is activated and the evacuation floor is not selected, the lift will only open the doors.

Parameters		
610	Destination 1	Not Active, Floor $1 \rightarrow$ Floor 32
611	Side	Not Active, Side A, Side B, Side A/B
612	Destination 2	Not Active, Floor $1 \rightarrow$ Floor 32
613	Side	Not Active, Side A, Side B, Side A/B
614	Stop in Travel	No, Downward, Upward, Down/Upward
615	Door	Not active, O. at arrival, Open in Floor
616	DOLx1 Opens	Yes, No
617	DOLx2 Opens	Yes, No

Input

$12.4 \quad$ Fireman Service

(Parameter 620-622)
Fireman service allow the lift to run during fire alarm. The fireman service can be accessed with a keylock. The key have three settings: 0, 1 and Start, the start position is fitted with a spring and if key is released the key will return to the 1 position. There are three different types of fireman service:

FMS1

To access service the key need to be put in the 1 position. To be able to use the lift the key need to be turned to the start position, then press floor button and when doors have closed the key kan be released.

To open doors a dead-mans-grip is used and the door opening button need to be pressed until the door is fully opened, if released the door closes. Door closes automatically if a new destination is selected.

FMS3
As with FMS1 except FMS3 allows the lift to run with open doors.

Parameters		
620	Door	Not active, O. at arrival
621	DOLx2 Opens	Yes, No
622	Resend	Yes, No
Input		
FMS1		
FMS2		
FMS3		

$12.5 \quad$ Power Failure

(Parameter 623-628)
Power failure parameters control the lift during power failure. If lift is equipped with a UPS the destination floor of the lift can be set in case of power failure. P625 and P626 sets destination floor and destination side, in case of power failure.

Parameters	
623	UPS Switchtime
624	UPS Maxtime
625	Destination
626 Side	Floor $1 \rightarrow$ Floor 32
627 Max time	
628 In service	
Input	
PF	
PFN	
PFU	
PFUD	
PFUU	
Output	
PFI	
PFN	
PFU	

12.6 Keylock

(Parameter 630-640/KC1,KC2,KC0-9)
In order to lock car calls from unauthorised use, the lift has the option of two built-in code locks for locking destinations. For each code lock a code is selected, which floor and which side will be locked. It is also possible to activate the code lock from an external signal e.g. time channel from a building monitoring system or similar.

The code is entered using the floor call buttons.
Note: \quad The floor call buttons are listed as I^{1} to I^{9} which is input 1 to input 9.

Parameters		
$630 / 635$	Keycode	The code use can be either the destination buttons or a separate code lock button KKn
$631 / 636$	Floor	Not active, All, Floor number
$632 / 637$	Side	Not active, Side A, Side B, Side A/B
640	Time	(1) Max time for locking, max time between button pressing

Input
KC1
KC2

$12.7 \quad$ Priority

(Parameter 645-646)
The maximum time for priority travel is set with P645 and P646 set return action after priority travel is completed.

Parameters

645	Max time	(1)
646	Return	Auto, Manual

Input/Output
PSC
PSxx

13.1 Zone System
 (Parameter 650-651)

13.1.1
 Zone System with Flag Counting

The system is based on two safety relays RE14:1 and RE14:2, which bridge the safety circuit for the floor. The relays are controlled by three detectors (photocells, magnetic sensors), ZONE, Pulse Down (floor calculation down) and Pulse Up (floor calculation up). Relay RE14:1 is controlled by ZONE (input S3 P2:Z1) and RE14:2 by both PD (input S3 P2:Z2) and PU (input S3 P2:Z3). To check that the sensor and contactors work correctly, the lift control computer monitors the system and imposes requirements for sequence, response times etc.

For the lift to enter the zone the following is required:

 In the example the lift is assumed to go from floor 1 to floor 2.| Step | Event | Comment
 1 |
| :--- | :--- | :--- |
| Lift reaches PU | Slows down | |
| 2 | Lift enters slow speed | |
| 3 | Lift reaches PD | |
| 4 | S3 activated minus side on relays RE14:1 and | |
| | RE14:2 | |
| 5 | RE14:2 engages | Minimal time between 5 and $6-100 \mathrm{~ms}$ |
| 6 | Lift hits ZONE | |
| 7 | RE14:1 engages | Provisional door opening |
| 8 | Lift hits PU | Lift stops |

13.1.2 Zone System with Incremental Encoder

The system is based on two safety relays RE14:1 and RE14:2, which bridge the safety circuit for the floor. Relay RE14:1 is controlled by ZONE (input S3 P2:Z1) and RE14:2 by the incremental encoder. To check that the encoder and contactors work correctly, the lift control computer monitors the system and imposes requirements for sequence, response times etc.

For the lift to enter the zone the following is required:

In the example the lift is assumed to go from floor 1 to floor 2.

Step	Event	Comment
1	Lift reaches slow down	Slows down position for floor 2
2	Lift reaches slow down position	
3	Lift reaches incremental encoder door zone	
4	S3 activated minus side on relays RE14:1 and	
	RE14:2	Min time between 5 and 6-100ms
5	R14:2 engages	
6	Lift hits ZONE	Provisional door opening
7	RE14:1 engages	Lift stops

For the lift to be given starting permission, the following is required:

Step	Event	Comment
1	Lock path engages	
2	RE14:1 and RE14:2 deactivated	Max time between 2 and $3-200 \mathrm{~ms}$
3	Both RE14:1 and RE14:2 switch	
4	Other systems initiated	
5	Start	

If step 4 or 5 fails, at the start the lift automatically goes to the zone if the zone function was activated in step 1. This prevents a person or goods being locked into the lift car if the safety circuit is not intact or if other tests are not functioning (photocell tests, block tests).

On Power Connection After Maintenance Running

Step	Event	Comment
1	Voltage connected	
2	Maintenance switches at normal	
3	Lift parked in floor 1	
4	RE14:1 and RE14:2 activated	Max time between 4 and 5-200ms
5	RE14:1 and RE14:2 engaged	

13.1.3 Risk Analysis

Event	Requirement	Reaction	
RE14:1	does not switch at start	Max 200ms after deactivation.	Lift stopped ${ }^{1)}$
RE14:1	does not engage	Min 100ms after slow down.	Door system shut down
RE14:2	does not switch at start	Max 200ms after deactivation.	Lift stops $^{1)}$
RE14:2	does not engage	Min 100ms after slow down and Z1.	Door system shut down
ZON	does not engage	Min 100ms after activation.	Door system shut down
ZON	does not switch	ZONE effected on slow down.	Door system shut down
Start	Not ok	Start procedure not completed.	New start attempt. Door system shut
		down²)	Lift stopped ${ }^{1)}$
Contactors	Do not switch	Max 1s after stop	Lift shut down ${ }^{1)}$
Run	time elapses	Adjustable time	Door system shut down ${ }^{3)}$
PD/PU	does not engage	Floor counting does not function	Door system shut down ${ }^{3)}$
PD/PU	does not switch	D/PU affected on slow down	
Miscount	Stops at wrong floor	Does not enter zone ${ }^{4)}$	

${ }^{1)}$ The computer indicates this through LED COP flashing at 2 Hz , the buzzer sounding; the fault is stored in the list of recent faults. The lift runs for maintenance. Disconnection of zone system performed
${ }^{2}$) On adjustment.
${ }^{3)}$ On pulse counter with photocell or similar.
${ }^{4)}$ On pulse counter with incremental encoder.
According to the requirements and reasoning above, the requirement must be fulfilled that if a fault occurs, the lift will not be able to be used for personal or goods traffic.

Parameters

650 Zone system Yes, No

13.1.4 Door Zone

(Parameter 651)
Three alternatives for zone, mechanical (NO), PD/PU via pulse flags or zone system, see below. PD/PU is controlled by pulse flags PD/PU and lower/upper limit LD/LU. The lift is within a zone if any one of PD/PU, PD/LD, PD/PU/LD, PU/LU or PD/PU/LU is activated. After the lift has entered the zone, the lift must give both flags for the lift to interpret this that the lift has left the zone. If parameter zone system is set to YES and door zone PD/PU, both flags/incremental encoders and the zone system function as a zone for the doors. This combination can be used on lifts where it is not a requirement for the zone system to function before the doors open.

Parameters

651 Zone door External, Pulse down/up, Zonesystem

13.2 Levelling

(Parameter 660-662)

P660 is selected for adjustment with open and/or closed doors. The start value is programmed according to "Start Sequence" on page 24 and direction with P153. A built-in delay to prevent adjustment beginning before the lift has stopped is set with P661. The time is calculated from when the input for the contactor monitoring went low. To prevent the main contactors engaging when adjustment is in progress, the adjustment contactors should also be connected to the contactor monitor (applies in the case where separate contactors are used for adjustment).

Parameters

660	Active	Not Active, Open, Closed, Open/closed
661	Starttime	$\boldsymbol{\varnothing}$
662	Delay stop	$\boldsymbol{\varnothing}$

13.2.1 Relevelling with Incremental Encoder (Parameter 154-160)

To keep the lift levelled and inside the zone where the lift doors can be opened, the lift needs to correct its position. This is mainly for hydraulic lifts that loose height due to hydraulic fluid "leakage".

Relevelling sets the values for where the lift needs to adjust its position.

Figure 13.1 Relevelling
Correction to keep the lift levelled is performed with the help of relevelling.
P160 sets the size of the Zone where the lift need to be placed in order for the doors to be able to open and P156 and P157 sets the distance upward and downward before relevelling is performed.

P 160 default value is set to 250 mm and P 156 and P 157 is set to 10 mm . This means that the lift starts to relevelling if it's positioned less than 119 mm (P160 +6 mm hysteresis) and more than 15 mm (P157 (or P157) +5 mm hysteresis) from the floor. It stops to relevel when it enters within the values set by P156 or P157.

Parameters

154	Synchroniz.	\#	Position in mm for synchronizing sensor (reset position counter)
155	Config sync	Sync., Slowdown	If the synchronizing mark shall force the speed down or not
156	Stop low speed down	\#	Distance for low speed to stop on downward running
157	Stop low speed up	\#	Distance in low speed to stop on upward running
158	Stop medium speed	\#	Distance in medium speed to stop
159	Stop high speed	\#	Distance in high speed to stop
160	Zonesize	\#	Door zone size shall be at least 100 mm higher than the zone flag for the zone system

13.3 Door Control

This section let you control door and level behaviour.

13.3.1 Door I/O Ports

There are a number of I/O ports used by the door system:

Door opening 1 (DOLA1, DOLB1)
Input for door button internal and external. Door opening 1 activates door time 1.

Door opening 2 (DOLA2, DOLB2)

Input for photocell and momentary arm etc. Door opening 2 activates door time 2.

Door opening 3 (DOLA3, DOLB3)

Door opening 3 is used for door automatic systems to give protection for people who have difficulty moving. If the door system is activated, the door opening input is active as long as the door is open. The input is connected suitably to a photocell in the door opening or an IR sensor. The door is open as long as the sensor is activated and closes after door time 2 has elapsed.

Door opening 4 (DOLA4, DOLB4)

Door opening 4 is used for loading. Normally door opening 4 is selected bi-stable. The door closes automatically when the send time elapses. Door opening 4 can also be controlled from the normal door buttons (DOLA1, DOLB1). If the door button is held down for more than 3s, door opening 4 and door time 4 are activated. To reset/close doors press the door button for less than 3 seconds.

Door opening 5 (DOLA5, DOLB5)

Door opening 5 is used for external motion detectors guarding the front of the lift. This is most commonly used for loading lefts where doors should remain open for wagons, trolleys, carts etc. The sensor accepts signals for three door openings before door is closed.

	Side A		Side B			
	Parameter	Input	Output	Parameter	Input	Output
Door Opening 1	P681	DOLA1		P691	DOLB1	
Door Opening 2	P682	DOLA2		P692	DOLB2	
Door Opening 3	P682	DOLA3		P692	DOLB3	
Door Opening 4	P683	DOLA4		P693	DOLB1	
Door Opening 5	P682	DOLA5		P692	DOLA5	
Door Closing			CLA			CLB
Door Opening			OLA		OLB	

13.3.2 General

(Parameter 670-679)
This section covers the general parameters for controlling the doors.

Active (P670)

Sets behaviour of door. If Off is selected, there is no automatic door opening. If On is selected the door remains closed until the door is opened with the car or floor door opening button. If automatic is selected, normal operation is used.

Car Opens (P671)

Car calls also opens car doors.

Car Closes (P672)

Car calls also closes car doors

Land Opens (P673)

Landing call button also opens car doors if no destination is selected..

Doorclosing (P674)

Delay before door close button can be pushed (or car calls if P672 is set to Yes).

Doors open (P675)

Floor door at current floor remain open if this parameter is set to Active. All floors or a single floor can be set to be active. This parameter is not permitted to be active according to EN81-1/2.

Side (P676)

Doors can be opened at Side A, Side B or at both sides. This parameter is not permitted to be active according to EN81-1/2.

Retiring Cam deactivation (P677)

Set the deactivation of the retiring cam. Early is only possible if the lift has zone system.

Forced Close (P678)

Forced Close monitors CLA (Close Limit A - Limit Shaft Door Close). If inactive the door is closed.

Block Door Open (P679)

Door open button is locked and require code (see "Keylock" on page 33).

Parameters Common side A and side B		
670	Active	Off, On, Auto
671	Car opens	Yes, No
672	Car closes	Yes, No
673	Land opens	No, No Carsignals, Yes
674	Doorclosing	(I
675	Doors open	Not Active, All, Floor 1 \rightarrow Floor 32
676	Side	Side A, Side B, Side A/B
677	Ret.cam deact.	At Stop, Early
678	Forced cl.	Yes, No
679	Block dooropenb	Yes, No

13.3.3 Side A/B

(Parameter Side A:680-688 / Side B:690-698)
Side A/B parameters let you control the doors on respective side.

Door type (P680/P690)

D

Figure 13.2 Door Types
There are three main door types supported by S3.
A - Swing Door
B - Swing Door (in combination w. Telescopic Door)
C - Telescopic Door
D - Telescopic Tunnel

Time 1 - Door Time On Stop (P681/P691)

Door open time on stop, internal/external buttons.

Time 2 - Door Time at Photocell Activation and Overload (P682/P692)

Door open time at overload. Normal protection in door opening - photocells, momentary arm etc. Time 3 uses same value as Time 2.

Door Time 4 - Door Time at Loading (P683/P693)

Door open time at loading.

Changetime (P684/P694)

Time between opening and closing and between closing and opening. The time is provided so that there is time between the opening contactor switching and the closing contactor engaging and vice versa.

Maxtime open/close (P685/P695)

Controls the maximum close time or maximum cycle time from full open to full close. Set the active time for open/close.

Input 1 (DOLA1) (P686/P696)
See Section Door I/O Ports below.

Input 4 (DOLA4) (P687/P697)

See Section Door I/O Ports below.

Door opening on arrival at floor (P688/P698)

Controls how the door will open when the lift arrive at a floor. Off disables automatic opening, at stop opens door when lift has reached the floor and stopped, early opens the door before the lift has reached full stop (early is only available if the lift has zone system).

680/690	Type	Swingdoor, Telescopic, Telescopic/ Tunnel	
681/691	Time 1	(1)	Stopping for Internal/External calls
682/692	Time 2	(1)	Overload of Photocells in Car Door Opening
683/693	Door time 4	(1)	
684/694	Changetime	(1)	
685/695	Maxtime o/c	(1)	
686/696	Input 1	Monostable, Bistable	
687/697	Input 4	Monostable, Bistable, DOLs1 delayed	
688/698	O. at arrival	Off, At stop, Early	

13.3.4

Cabindoor

Door Opening (P700)

Controls the door opening of the car. Time limited door opening for door control with two inputs. Continuous for door controls with one input.

Opening Time (P701)

Sets the opening time for P700. Only valid for Time Limited door opening.

Time Input(s) (P702)

Input time for car and floor calls, door open button, overload and photocells.

Change Time (P703)

Time between opening and closing and between closing and opening. The time is provided so that there is time between the opening contactor switching and the closing contactor engaging and vice versa.

Maxtime Close (P704)

Controls the maximum close time or maximum cycle time from full open to full close.

Open at arrival (P705)

Controls how the door will open when the lift arrive at a floor. Not active disables automatic opening, at stop opens door when lift has reached the floor and stopped, early opens the door before the lift has reached full stop (early is only available if the lift has zone system).

Parameters Cabindoor

700	Dooropening	Time limited/continuous
701	Openingtime	(
702	Time input(s)	(
703	Changetime	(1 stop, Early, Not Active
704	Maxtime close	At
705	O. at arrival	

13.3.5 Cabin Doors

The Cabin Doors parameters let you set the door behaviour on each individual floor.

Parameters Cabindoors

710-741 Cabindoors Not Active ,Side A, Side B, Side A/B

Lift in Group

To increase the effectiveness when there are two or more lifts side by side, the system can be supplemented with a communication link, which means that the lifts can divide external calls, a maximum of 8 lifts can be linked together. Each lift has a unique address and description of how the call acknowledge, door circuit, doors should be operated and their bottom floor.

Figure 14.1 Lifts in Group
Up to eight lifts can be connected to run in group. One S3 Control Unit is required for each lift. The first S3 functions as the master Control Unit.

Parameters

750	Nr of lifts	$0 \rightarrow 8$	
751	Address	$0 \rightarrow 7$	Yes, No the bottom floor of the current lift. (Offset from bottom floor).
752	Coming light	\#	Set factor of each lift in group. Lifts with lower factor receives fewer calls.
756	Bottomfloor	Not Active, All, Floor 1 If lift should mainly operate within a certain zone, the bottom floor of this zone is set with this parameter.	
757	Servicefactor	Not Active, All, Floor 1	If lift should mainly operate within a certain zone, the top floor of this zone is set with this parameter.
759	Zone bottom	(l)	Not Active, Automatic, Lift $0 \rightarrow$ Lift 7
760	Zone top	Specifies if a certain lift can be called with a long push with floor call button	
761	Time	Yes, No	If there are more than 3 calls per lift in the group, Door closing time 2 is used.
762	Long push	Yes, No	Doors at all doors on a floor is opened.
763	Quick closing		

14.1 Description of Lift Selection

For a lift to be selected the following is required:

- the lift can serve the call on the floor selected
- the maintenance is not activated
- the out of use of arm is not activated
- the call on the computer is on and external shut down is not on
- the fire alarm function is not activated
- the external blocking is not activated
- the safety circuit and door closure timeout are not activated
- the full load is not activated

The lift opens the doors in most of the above cases.
If the above are fulfilled, the system will select the lift in the following selection principle:
1 Nearest empty lift
2 Nearest lift approaching the call in the direction selected
3 Nearest lift approaching the call
If two or more lifts fulfil the above, any one is selected.

14.2 Fault Handling

If an error occurs and the group loses contact with a computer the others continue to function as normal. If the master computer stops functioning the computer with the lowest adress takes over and continue as master.

15.1 Travel Arrows

(Parameter 780-781,TRD/TRU)
There are two outputs for direction indicator arrows - direction indicator down and up. The arrows can either come on when moving or not. It can also be selected whether both arrows should be lit when the lift is empty.

Parameters

780	At floor	Yes, No
781	In travel	Yes, Flash, Flash at lowspeed, No

15.2 Arrival Signal

(Parameters 790-797, ARS1,2)

There are two outputs for acoustic arrival. Arrival signal 1 is intended to be used for the arrival signal in the car and arrival signal 2 for external calls. The arrival signal can be programmed on door opening or arrival, P790/P795. You can also choose whether it should be active if external push buttons are on or off, P791/P796. The output gives a pulse. The length of the pulse can be programmed, P792/P797.

Parameters		
$790 / 795$	Config	At arrival, At opening
$791 / 796$	Landings	Off, on, off/on
$792 / 797$	Time	©

$15.3 \quad$ Occupied

(Parameters 800-801, OC)
Displays when the lift has a destination, the doors are open, the lift has stopped, maintenance running etc. This output also works on reduced and full collective. However the computer may receive more than one signal on the external buttons (does not work for lifts in a group). The occupied function is set with P800.

Note:

For lifts in a group - the occupied lamp only indicates whether the individual lift is occupied.
Parameters

800	Occupied time	©
801	Flash	Yes, No

15.4 Floor Indicator

(Parameter 805-947)
This section describes how to control the text displayed at each floor.

15.4.1 General

(Parameter 805)

Parameters	
805 Config	

15.4.2 Side A/B Binary

(Parameter 810-873)
Parameters set which binary outputs (DB0-DB7) should be active on respective floor.

$$
\frac{0}{087} \quad \frac{0}{086} \quad \frac{0}{D 85} \quad \frac{0}{D 84} \quad \frac{0}{D 83} \quad \frac{0}{082} \quad \frac{0}{081} \quad \frac{0}{D 80}
$$

Side A

Side B

Parameter	Floor	Binary	Parameter	Floor	Binary
P810	1	00000000	P842	1	00100000
P811	2	00000001	P843	2	00100001
P812	3	00000010	P844	3	00100010
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
P839	30	00001101	P871	30	00101101
P840	31	00001110	P872	31	00101110
P841	32	00001111	P873	32	00101111

Parameters
810-873 Floor number 为

15.4.3 Side A/B Text (CAN Bus)
 (Parameter 874-913)

Sets the text displayed at the selected floor by using alphanumeric values.

Parameters
$874-913$ Floor number $\boldsymbol{\alpha}$

15.4.4 S3-DF03 (CAN Bus)

 (Parameter 940-947)Set the textmessages and font size of the texts displayed in the floor indicator.

Parameters		
940	Load text	$\boldsymbol{\alpha}$
941	Lift off text	$\boldsymbol{\alpha}$
942	Font size	$\boldsymbol{\alpha}$
943	Loadmessage	$\boldsymbol{\alpha}$
944	Fireservice	$\boldsymbol{\alpha}$
945	Out of order	$\boldsymbol{\alpha}$
946	Powerfailure	$\boldsymbol{\alpha}$
947	Priority	$\boldsymbol{\alpha}$

Figure 16.1 Ports Menu
Example of the ports menu with 2 S3-UD03 cards installed and how CAN-Bus connected accessories are displayed with node number. The X after node 001D32 indicates that a configured accessory has been disconnected.

Port setup is performed at the Parameters/Ports menu. The cards of the S3 are listed beginning with the bottom card (S3-KR01) up to the top card (S3-UD03). If the S3 is fitted with more than one S3-UD03 card, then the cards are numbered from top to bottom (see S3-UD03 card numbering in figure above).

The ports of each card are listed in the menu and each port is configured separately. Function determine the function of the connected device to the port. A list of input functions and a list of output functions are listed below.

Level normal or inverted can be set and for inputs you can also program the closure time and opening time by stating how many times the ports should be read before a change occurs. The ports are read every 10 ms , most ports are read three times before switching i.e. inputs must be stable for at least 20 ms .

16.1 CAN Port Connected Devices

The CAN Bus allows for automatic identification of connected devices. Once connected the device name is listed together with the node number of the device. Some devices have customized options listed while other has the default options: Function, Level, Off samples and On samples.

For more information about connected CAN-Bus devices, see the CAN-Bus section.
LD Lower Limit
PD Pulse Down
PU Pulse Up
A Incremental Encoder channel A
B Incremental Encoder channel B
MP Motor Protection

ML Main Limit/low pit/top
ES Emergency Stop
MC Control Circuit
DC Door Circuit
EC Security Circuit, stop circuit
PD1,PD2
CC
ED
MT
ZS
$\begin{array}{ll}\text { OLn } & \text { Overload } \\ \text { FL } & \text { Full Load }\end{array}$
FAN Car Fan
DOLs1 Door Opening Shaft Door 1
DOLs2 Door Opening Shaft Door 2
DOLs3 Door Opening Shaft Door 3
DOLs4 Door Opening Shaft Door 4
DOLs5 Door Opening Shaft Door 5
DCLA Door Closing Button
OLs Door Opening Limit
CLs Door Closing Limit
Prd Presence Detector
DOC Door Opening Inner Door (gate)
DOCs Door Opening Inner Door (gate) Photocells, moment
FS1,FS2 Fire Running 1 and 2
FMS1 Fireman Service
FMS2 Fireman Override
FMS3 Fireman Start
ST External Stop Signal for Definitive Stop
PF Power Failure
PFN Normal Relay
PFU UPS Relay
PFUD Rescue Operation Down
PFUN Rescue Operation Up
PFL Sending Destination Choice
OFL Shut Down External Buttons
EXT1-3 Monitors - Temperature Protection etc
BLR Block Reset
CC Clear Car Calls
C1-ns ${ }^{1)} \quad$ Car Calls
D2-ns ${ }^{1)} \quad$ Landing Calls Down
Vxx-ns ${ }^{1)} \quad$ Landing Calls Up
KC1, 2 Activate Code Lock 1 and 2
KC0-9 Code buttons 0-9
PSC Prioritize running car
PSSn Prioritize running external
MVSn Movement monitoring
BRS1-4 Brake Supervision
IO1-8 I/O Signal
EVA1 External Unit A1
EVA2 External Unit A2
EVB1 External Unit B1
EVB2 External Unit B2
SG Overspeed Governor
LFns Disable Landing/Car Calls
EDns Door supervision, Low Pit/Headroom
RST Reset of Computer

Active low
An

Door button
Photocells, moment
Swing door, protection for the disabled
Loading
Motion Detector

16.3 Function Outputs

RC Retiring Cam
OC Occupied Indicator
ARSn Arrival signal
OL Overload
OLs ${ }^{1)} \quad$ Open shaft door
CLs ${ }^{1)} \quad$ Close shaft door
PRDs Present
OCs ${ }^{1)} \quad$ Open inner door (gate)
SCA/B ${ }^{1)} \quad$ Close inner door (gate)
PS Prioritized running in progress
V0-V7 Outputs for control of main motor
OOS Out of Service
OFL Landing Off
EF1-3 External Fault
LB Landing Blocked
FSO Fire running
FAN Motor fan
FAN Car fan
CLO Car light
FC1-6 Photocell monitoring
TRD Direction of running down
TRU Direction of running up
Dns ${ }^{1)} \quad$ Output floor indicator
DB0-7 Floor indicator binary coded
C1-ns ${ }^{1)} \quad$ Acknowledgement (direct control)
D2-ns ${ }^{1)} \quad$ Acknowledgement down (full collective)
U1-ns ${ }^{1)} \quad$ Acknowledgement up (full collective)
CL1, $2 \quad$ Code lock 1 and 2 locked
PSO Prioritized Common for all prioritized running
PSOn Prioritized acknowledge
KCO Keylock
PSns ${ }^{1)} \quad$ Prioritize Side
IO1-8 IO-Signal
EUn Ext. unit out
SG Speed Governor
RST Reset
PFI Inverter
PFN Norm. Relay
PFU UPS Relay
FS1 Fireservice 1
FS2 Fireservice 2
DBZ Door Buzzer
FD Phasedetector
EF3 Reset
INS In Service
DZN Door Zone
DO Door Off
OFF Lift Off
LC Landing Calls

Outputs and inputs active high unless specified otherwise.

1) where n indicates the number or number of floors, s is door side A / B

In connection with operation and in fault situations, information is collected. Information is stored in a RAM memory with a condenser back-up.

17.1 History

History has a number of different submenus. Last 100 faults, Operating meter, Fault counter, System and Reset.

Last 100 faults list the 100 latest faults with the most recent fault at the top. The faults are numbered from 0 to 100 . Faults are stored together with date, time and name.

0	Fault 0 - latest fault
$1 \ldots$.	Fault 1
98	Fault 98
99	Fault 99 - oldest fault

17.1.1 Fault types

Zone relay fault
Break zone
Adjustment
Normal run time
Control circuit
Contactor fault
Loose running
Photocell fault
Movement monitoring
Positioning fault
Slow speed fault in zone
Slow speed fault
Phase fault
+24 V <16V
+24V FUSED<16V
Monitor 1
Monitor 2
Monitor 3
Backup C
Temp. cabinet
Door fault in floor
Start fault in floor
Break MS
Break ML floor

Break NS

Break MK
Break DK floor
Break SK
Break KK floor
Break Zone

When zone relays RE14:1-2 should switch, they do not. The lift is shut down. When the zone relays were activated they switch due to signals on Z1-Z3. Adjustment did not work when the lifts were to be adjusted.
The normal run time was exceeded on running. Lift is shut down. Interruption in the control circuit, which means the lift is blocked ($>1.5 \mathrm{~s}$). Lift is shut down. Contactors did not switch on stoppage. Lift stopped.
Fault when the lift is started from the floor. Acknowledge from blocking mark did not work. Photocell monitoring failed to check all photocells.
Computer could not record that the lift moved within 4 seconds.
Fault in flag counter or incremental encoder for the system.
When the lift must stop at a floor, it does not move before the slow speed time expires. The lift stopped in the zone. If the lift has adjustment, it starts automatically at the floor.
When the lift must stop at a floor, it does not move to the zone. The lift starts automatically. Phase monitoring triggered, lift begins automatically as soon as all phases are OK. Internal voltage monitoring in the computer has triggered instead a supply of $<16 \mathrm{~V}$. The internal surge current protection in the computer has triggered instead a voltage $<16 \mathrm{~V}$. Input from monitor 1 low.
Input from monitor 2 low.
Input from monitor 3 low. Fault from monitor 3 does not give alarm if the lift has stopped.
Condenser for statistics under 2.5 V - Can mean that the statistics are incorrect
High temperature in cabinet (computer)
Fault when automatic door should close
Fault when the lift should start. Contactors did not engage during contactor monitoring time. Break in motor protection circuit during running.
Break in main limit switch low head/top during running. If Control limit fault (ML) is not triggered, the fault was shorter than 1.5 s .
Break in emergency stop circuit (emergency stop roof, pit, machine room, not car) during running
Break in control circuit, circuit between control limit circuit and door circuit during running
Break in door circuit during running
Break in safety circuit (emergency stop car)
Break in contactor monitoring during running
Break in zone system when the lift is in the floor.

Operating meter shows how many starts the lift has made and how long the motor has been in operation.
Fault counter shows how many faults have occurred of each type.
System shows system/counter faults. The counters count the number of starts made by the computer and the number of internal faults in the computer. If this risk count has a value significantly different from nil (all except reset), contact your system engineer.
Reset Operating counter and fault counter/fault memory can be reset individually.

Last 100 errors		
Counters	Startcounter Traveltime Out of service Service counter	
Failcounters	Zonerelay fail Break in zone Levelling Normal TT Safetycircuit Contactor Pawldevice FC error 1-6 Positioning Lowspeed in zone Lowspeed Movement sup.1-3 Brake failure Ext. unit Speedgovernor	Start seq.error Phasedetector $+24 \mathrm{~V}<16 \mathrm{~V}$ $+24 \mathrm{~V}$ FUSED<16V Ext.fault 1-3 Temp cabinet Door floor Start floor Break MP Break ML floor Break ES Break MC Break DC floor Break CC
System	Reset Pgm fail (COP) Pgm fail (CMF) Pgm fail (EXE) Pgm fail (MCCOP)	
Clear	Travel counter Failure counter Service counter	

17.2 Event List

The software is event controlled. Each event that occurs is stored in the RAM memory. The computer stores around 25000 events. An event could for example be when a button is pressed, when a pulse comes from the photocells for floor counting etc. For each event logged, the date and time of the event is stored. The event list is a useful aid for advanced fault tracing. It can be used to calculate times between different events and monitor systems while not on site. To use the event list, contact the system engineer to interpret the codes. There are around 2000 different events.

Options		
Eventlist		
Clear		
On/Off	Lift incoming	On, Off
Selection	Lift outgoing	On, Off
	Group incoming	On, Off
	Group outgoing	On, Off
	Errormessage	On, Off
	Serialcom.	On, Off

17.3 Start Conditions

This shows which conditions are missing for normal, reset, maintenance running and auto tuning. The computer shows only the conditions that are not fulfilled. If all conditions are fulfilled, the text All conditions ok is displayed. If the lift is in operation, conditions that are not fulfilled for a new start are displayed.

Fault	Explanation
Liftpgm not running	Lift program did not start when the computer started due to parameter fault or pressing <ESC> at start.
$+24 \mathrm{~V}<16 \mathrm{~V}$	Power to the computer is missing or incoming fuses are tripped, voltage must be above 16 V .
+24 Fused <16V	Fuse for external 24 V triggered, voltage must be over 16 V
Phasedetector	Phase monitor triggered, see Measured Value in \Debugging\Status
Errorstatus	A fault has occurred which requires reset, see \Debugging\History
Ext. fault 1	Input from monitor 1 not ok (input signal EXT1, normally connected to T1)
Ext. fault 2	Input from monitor 2 not ok (input signal EXT2, normally connected to T2)
Ext. fault 2	Input from monitor 3 not ok (input signal EXT3, normally connected to T3)
LD/LU activated	Upper limit and lower limit influenced together i.e. computer receives signal that the lift is both at the top and at the bottom simultaneously (signals LD, LU, normally connected to P3, P4).
Emergency stop	Emergency stop button broken, reset with destination or call button
CC activated	Main contactors engaged (input signal CC normally connected to 1112)
Maint. active	Maintenance active
Maintenance S3	Maintenance running on S3
Maintenance roof	Maintenance running on roof (input signal MAINT, normally connected to 1111)
Car emerg.stop	Lift is blocked for further calls as the safety circuit has broken, reset with internal destination
In travel	Lift running
Direction missing	Lift has no direction
Min. stoptime	Minimum stop time between start and stop
Overloaded	Overload (in signal OL, normally connected to 1113)
Hidden door	Concealed door inputs not equal to door circuit (input signal ED, MC, DC)
Security circuit	Safety circuit broken
Stop time	Stop time outer or inner
Zone system	Zone system relays for connecting safety circuits are not engaged
Door open	Door open
Door closed	Door closed
Start time	Start time for adjustment

Options

Normal
Levelling
Maintenance
Auto tuning

17.4 Door Status

Displays the current status of the doors, if doors are closed and in Zone.

Options
Side A
Side B

17.4.1

Status
System information such as temperature, voltage, back-up condenser, external 24 V , processor utilisation and phase monitor.

Options

Temperature	Temperature in the shaft
Vcc	CPU voltage after the PTC resistor
Unreg.	CPU voltage before the PTC resistor
Backup C	Capacitor voltage for backup memory
External 24V	Voltage for I/O
Utilization	Processor load
Phasedet.	Status of the phase detection relays
Angle	Status of the angle
Voltage	Status of the 3-phase voltage

17.4.2 Floor Count

Information on floor counter and flag counter or position in mm, absolute and relative to the nearest floor.

Options

Floor	Floor number
Counter	On/Off
Down counter	Down Counter in mm
Up counter	Up Counter in mm

17.4.3 Landings

Information on lifts in the group. Lift status, position, direction, whether parked and side (for lifts with tunnel).

$17.5 \quad$ Tools

17.5.1 Auto Tuning

Engages output relays for control of frequency converters so auto tuning can be run on frequency converter. Shows which relays should be engaged during start value. Activate function with active. Stop function with stop.

Options

Start value
Activate
Stop

17.5.2

Pendulate
Pendulate let you run the lift between floors automatically. Either random running or between terminal floors.

Options		
Config	Terminal Floors, Randomized	
Times	Number of times the lift should run	
Stoptime		
Activate	Activates the test	
Status	Displays the number of journeys the lift has made since test was activated, and whether the test is active or not	

17.5.3 Send Lift

Sends the lift to the floor selected, shows destinations stored. Select side before new destination entered. Send the lift without door opening, select not active on side selection.

Options	
Side	
Floor	- Floor number

17.5.4

17.5.5

Encoder

Set floor when lift is fitted with incremental encoder. For instruction about how to set up a lift with incremental encoder with the Encoder tools, see "9.4.2 Installation of Incremental Encoder Lift System" on page 22.

Options

Active			
Preferences	- Highspeed - - Mediumspeed		
Syn.Pos.adjulate		\quad	- Floor 1
:---	:---		
- Calculate			

17.5.6
 KEB

Options	
Parameters LF	- LF list
Operation data ru	- ru list
Information In	- In list
Settings CAN	- CAN Baudrate - - Save

Doubleclick

The time between two key pressings to be regarded as a double click. Sometimes equal to 10 ms . On double click the cursor jumps several steps in the menu and lists etc.

Clock

Set date and time.

Buzzer

Buzzer can be turned off.

Screen Saver

Time before screen saver is activated.

Screen light

On, Off or Auto. On = always on, Off = always off, Auto = on if all phases in are correct (standard). Can only be set if the system engineer password is given.

Password

The password protects the lift users. For the lift to fulfil the requirements imposed in different standards, protection has been fitted against incorrect parameters changes. It is important that access to the system is only granted to technicians with adequate knowledge of rules and regulations that apply to the lift industry. Passwords should only be available to the the person responsible for the lift installation and professional lift technicians.

WARNING
Passwords should be used to avoid unauthorized access to the lift control system. Unauthorized changes to the settings could affect the safety of the lift and its passengers.

Programming	Protects all programming.
Safety	Protects security functions such as adjustment, trigger running from mark etc.
System techn.	Protection against change of hardware-specific parameters and calibrations.
Options	
Change Change password and lock. The new password must be confirmed.. Lock Lock computer with previously stored password, old password must be confirmed. Unlock Unlock computer after entering correct password.	

This section is used to configure and test the system.

19.1 Erase memory

Erases the memory parameter. The memory is divided into two systems, lift memory that stores all functions related to the lift system, and the system memory that stores all control system related data. The memories can be erased separately or both together.

Options	
Lift	Clears all functions relating to the lift system
System	Clears all system data
System//lift	Clears both system data and all functions relating to the lift system

19.2 Update memory
 Run this function when a program change has been made on the computer. All changed parameters and vital parameters are updated so the lift retains its function. For more information see "20 Software Operations" on page 59..

$19.3 \quad$ Copy memory

Copy memory. For more information see "20 Software Operations" on page 59.

19.4 Explore memory

This function enables you to browse and search the RAM memory. This function is for advanced fault tracing and require good knowledge of the S3 system.

19.5 Hardware

Type Description

The type description of the computer is given below. Set on production of hardware. Controls configuration of I/O circuits.

Example:
S3-4A3SP0 S3 with main voltage 400VAC, 8 relays, 24 double direction ports, graphic display, positioning with photocells, no field bus.

Note:
 Not all combinations are produced

CAN IC
Setting of type of field bus circuit. Set on production of hardware.

Calibration

Calibration of hardware - requires peripheral equipment. Requires expert knowledge of the S3 Control Unit System.

Test

Test input and output ports. Show computer interpretation of input ports and possibility of changing/ testing output port status. Output ports can also be changed during operation. To test outputs lift program must be turned off. Press <Esc> at computer start.

ACAUTION

N
To test the ports, turn off the lift program or press the stop button. Check that the outputs for contactors that must not be engaged together are not engaged e.g. Y/D and N/U.

Options

Type	
Serie-/nodenumber	
CAN IC	
CAN Baudrate	
SPI Memory IC	
Config ports	- Ports
Calibrate	- Phasedet.
Test ports	- Ports
Test COP-timeout	

19.6 Software
 Program

Select program to be run - Normal lift program. Requires expert knowledge of the S3 Control Unit.

Lift

Show status of lift program.

Multiplex

Shows status of group control program.

Incremental Encoder

Shows status and software in incremental encoder processor.

Load flags

Requires expert knowledge of the S3 Control Unit.

Options
Program
Lift
Multiplex
Encoder
Update ext. CPU
Uploadflag
SCI Debug
Status

20.1	Reset
	Restart computer.

20.2 Language

Select language. At present Swedish, English, German, Polish, Dutch and French are supported.

20.3 Help

Help

Shows help text on how to obtain help in the system. Help is available for menus and choices. When help is available for a menu choice, this is shown by a question mark at the left hand edge of the line. Press the left hand arrow - the help window appears - close with Esc.

About

Shows the program version, type and serial number.

20.4 Monitoring Safety Circuit

20.4.1 Inspection

Maintenance running is activated when an input goes low. When the input is activated, the inspection buttons on the computer are disconnected i.e. priority is given to the roof.

20.4.2 Door Circuits and Safety Circuits

If the safety circuit is broken during operation, the lift stops immediately, external buttons are disconnected, internal acknowledgement extinguished and the destinations stored internally, i.e. the destinations remain in the system but the acknowledgement lamps go out. For lifts with direct control, the occupied lamp stays lit. The system then waits for a reset from the internal destination buttons or door circuit, after the reset the stored internal destinations are lit again and the lift starts in the direction selected.

Note:

The lift starts in the direction pressed, not according to the former destinations. This prevents further jamming.

20.4.3 Definitive Stop

As an alternative to the lift stopping at the stop flags, instead it can be selected to stop at a separate switch or relay from a frequency converter or thyristor control.

If the definitive stop function is used, you can choose to program the flag settings as one-speed or two-speed lifts. The stop flags for a two-speed lift work as a normal door zone, they also act as security if the external signals do not arrive - then the lift stops immediately after the floor.

20.5 Overload/Full Load

20.5.1 Overload (OL)

On overload, the lift does not start until the unloading has occurred at the floor where the lift is standing, when the overload function is activated a door opening pulse is given automatically to the door unit (only for lifts with automatic doors) if opening on arrival at floor is activated (P688/ P698) and the doors remain open. The overload function is only active when the lift stops in the door zone.

20.5.2 Full Load (FL)

On full load the lift does not stop at the floor when only the outer signal is stored, the floor is served after the lift has been unloaded. The full load function acts when the lift has a load corresponding to 75% of its rated load.

20.6 Photocell Monitoring (FC1-4)

20.6.1 Function

When all conditions for the lift to start are fulfilled, the photocells are checked that the locking path is engaged. If the check fails, the locking paths switch and all calls and destinations are zeroed. Before the lift can perform a new start attempt, a new destination or new call is required.

When the start condition is fulfilled, the lock path is engaged to prevent the door opening. The computer unit then shuts off all photocell transmitters at once. The computer checks whether the safety circuit is broken or closes when the photocell transmitters are reset, the number of photocells is given with P300. If the photocells do not work correctly, the computer waits a maximum of 2 seconds.

20.6.2 Security

If any relay "hangs" in the system or if the input for the Emergency Stop circuit does not work, the lift will not start, as both closure and break are required before a start can take place.

21 Software Operations

21.1 Updating the S3 Software
 The S3 software is stored in a flash memory. The flash memory can be programmed using the PC and serial 9-pin D-Sub, null modem cable and software S3 Burner.
 Note: Three-phase feed is needed to perform upgrade and phase detectors need to be disconnected.

Requirements

Files can be downloaded from the P Dahl website.

- Mp2_x_xxx.sw - software for the S3
- Null modem cable
- PC with COM-port (RS-232)
- Operating System Windows 98, Windows ME, Windows 2000, Windows XP

Installing S3 Burner on a PC

S3 burner can be retrieved from our homepage www.pdahl.se. To retrieve it you need a user ID and password that you can get from our sales or support department.

1. Load the ZIP file S3BURNER.ZIP in a temporary directory
2. Run Setup

Updating the software

3. Connect communication cable between PC and the S3, COM1 to COM1
4. Disconnect the power to the S3
5. Move the programming jumper E3:A, to the B position (see figure below)

Figure 21.1 Jumper Settings
A = Normal Mode
B = Programming Mode
6. Connect the power, note that the screen of the S 3 is blank during software upgrade.

1. Start the program S3 burner
2. If your computer is fitted with several COM-ports, set the connected COM-port under Archive/Settings
3. Run Erase in S3 burner, wait until erase is confirmed
4. Select file to be loaded (MP2*.sw)
5. Run Upload in S3 burner. On some computers an error message might display when upgrade is started, do not click "OK" - update is not affected by this error message. Wait for confirmation that software has been upgraded.
6. Disconnect power
7. Move back jumper, E3:A to the A position (see figure above)
8. Reconnect power
9. I a message is displayed on the S3 that the memory need to be updated - run \System\Update memory
10. Run \Reset

21.2 Copying Parameters between S3 Control Units

It is possible to copy parameter data between two S3 control units. This could be useful if two identical lift systems are used or if a S3 unit need to be replaced.

Requirements

S3 Control Unit Software version MP2.1.64 or higher
Null modem cable

Connection

Connect the two computers with a null modem cable. Both computers need $3 \times 400 \mathrm{~V}$ or $3 \times 230 \mathrm{~V}$ voltage supply (24 V voltage supply is not necessary).

Programming

1. Set the parameter Parameters/Supervision/585 Supervision on BOTH computers to Via COM1
2. Restart both computers

Copying parameters

IMPORTANT!
The following instructions are ONLY performed on the computer
the parameters need to be copied TO. This procedure will
overwrite the parameters on the computer this operation is
performed on.

1. On the computer the parameters are copied to run System \backslash Copy memory
2. When the S3 is done copying, restart the computer for the system to be updated with the new settings.
3. If a message is diplayed that the memory need to be updated, run System \backslash Update memory

22 CAN Bus

22.1 Controller Area Network (CAN)

CAN is a broadcast serial bus standard for connecting electronic control units. The system allows for a large number of units to be interconnected via a single cable. The system also allows for longer cables where the length of the cables depends on the required bit rate.

The S 3 has a relatively low bit rate and a combined cable length of up to 1000 metre is possible.
Due to power consumption of each connected CAN device the recommended number of connected devices shouldn't exceed 50 devices.

22.2 CAN-Bus Devices

22.2.1 CAN Connectors

There are a variety of CAN connectors available. Figure below shows two different connectors, together with information about the wires.

Figure 22.1 CAN Connector
Two connectors.

1. 0 V
2. +24 V
3. C1 Signal
4. C2 Signal

22.2.2 CAN01 CAN-Bus Repeater

The CAN01 device is a repeater that boost the CAN Bus signal and allows for more devices to be connected.

The CAN01 also works as a termination device. It allows for short-circuits to be isolated within the limits of the termination device.

This is especially important for group lift systems, where a short-circuited lift system can be isolated and the other lifts in the system can operate as normal. The figure below shows three different ways to use the CAN01 to protect parts of the lift system from short circuits.

Figure 22.2 CAN01 Redundancy 1
Two CAN01 fitted in a three group system isolating the landing calls circuits from the computers. A short circuit in any of the two landing calls circuits will affect only the short circuited circuit. Landing calls will still be received from the other circuit.

Figure 22.3 CAN01 Redundancy 2
Three CAN01 fitted in a three group system isolating the landing calls circuits and one computer. A short circuit in any of the two landing calls circuits will affect only the short circuited circuit. A short circuit in the computer circuit will affect only one or two computers. Landing calls will still be received by one or two computers.

Figure 22.4 CAN01 Redundancy 3

Two CAN01 fitted in a two group system. The landing call buttons have been fitted every so that one circuit controls every other floor.
The CAN01's isolates the landing call circuits from the computers. A short circuit will affect only every other floor. This could be useful in tall buildings where a short circuited "floor" mean that you only have to go to an adjacent floor to find a functional landing call button.

22.3 Replacing a CAN-Bus Device
 Follow these instructions to replace a CAN-Bus device.

1. Note the node number of the CAN-Bus device that needs to be replaced.
2. On the S3 Control Unit locate the CAN-Bus device that need to be replaced in the Parameters/Ports list. The device is listed under its node number. If the S3 can't communicate with the device the device should be marked with an X
3. Press the right button on the S3 keypad to display the Cut and Paste menu.
4. To copy the settings of the device chose Cut
5. Return to the Parameters/Ports list and select the new device. The new device should be marked with a ?
6. Press the right button on the S 3 keypad to display the Cut and Paste menu.
7. To paste the settings of the old device onto the new device chose Paste
8. Restart the system

22.4 Adding a new CAN-Bus Device

Buttons and I/O cards are programmed the same way as I/O ports on the S3 Control Unit. For Floor Indicators the floor the indicator is installed on is chosen (floor designations are programmed under the Parameters/Indicators menu). Master buttons are listed under their unique node number and the slave buttons are listed under the master button, where the action of the button is configured. Slave buttons can be replaced without the need for a reset.

22.4.1 Programming a Button (S4-PB05)

1. Connect the button to the CAN-Bus
2. On the S3 Control Unit locate the button in the Parameters/Ports list. The button is listed under its node number and should be followed by a ?
3. Press enter to display the Configure Button Menu. SW1 is the master button and SW2 is the first slave-button, and so on.
4. Select SW1 and press enter
5. Select Function and press enter
6. Select the desired function in the list
7. Program possible slave buttons on SW2-7
8. Reset the computer

22.4.2 Programming an I/O-card (S4-IO8)

1. Connect the I/O-card to the CAN-Bus
2. On the S3 Control Unit locate the I/O-card in the Parameters/Ports list. The I/O-card is listed under its node number and should be followed by a?
3. Press enter to display the B11-18 Ports Menu. B11-18 represents the I/O ports of the I/O card.
4. Select B11 and press enter
5. Select Function and press enter
6. Select the desired function in the list
7. Reset the computer

22.4.3 Programming a Floor Indicator (S3-DF03, S3-DF04, S4-MIO2, S4-MIO3)

1. Connect the floor indicator to the CAN-Bus
2. On the S3 Control Unit locate the floor indicator in the Parameters/Ports list. The floor indicator is listed under its node number and should be followed by a ?
3. Press enter to display the Floor Menu.
4. Select the floor the floor indicator is installed on and press enter
5. Reset the computer

Param. Default		Obj. value	Description	228	56	Floor 29	
		229		58	Floor 30		
		230		60	Floor 31		
Controlsystem				231	62	Floor 32	
100	Oneway			System type PB/LandingQueue One way collective Two way collective	Floorpositions up		
					232	0	Floor 1
			233		2	Floor 2	
			234		4	Floor 3	
101	2		Floors	235	6	Floor 4	
102	3.0 s		Stop time car	236	8	Floor 5	
103	6.0 s		Stop time landing	237	10	Floor 6	
110	30.0 s		Car fan time	238	12	Floor 7	
111	No		Car fan at travel	239	14	Floor 8	
	600.0		Car light time	240	16	Floor 9	
				241	18	Floor 10	
Positioning				242	20	Floor 11	
				243	22	Floor 12	
General				244	24	Floor 13	
151	0		LD pos flag UP	245	26	Floor 14	
152	2		LU pos flag DOWN	246	28	Floor 15	
153	Normal		Direction	247	30	Floor 16	
			Normal	248	32	Floor 17	
			Inverse	249	34	Floor 18	
154	0		Sync. pos.	250	36	Floor 19	
			Encoder	251	38	Floor 20	
155	Sync/ slowdown		Configuration sync	252	40	Floor 21	
				253	42	Floor 22	
156	10		Stop low speed down	254	44	Floor 23	
157	10		Stop low speed up	255	46	Floor 24	
158	500		Stop from med. speed	256	48	Floor 25	
159	1000		Stop from high speed	257	50	Floor 26	
160	250		Zone size	258	52	Floor 27	
				259	54	Floor 28	
Floorpositions down				260	56	Floor 29	
200	0		Floor 1	261	58	Floor 30	
201	2		Floor 2	262	60	Floor 31	
202	4		Floor 3	263	62	Floor 32	
203	6		Floor 4				
204	8		Floor 5	Floo	ntrol		
205	10		Floor 6	264	00000000	Floor 1	
206	12		Floor 7	265	00000000	Floor 2	
207	14		Floor 8	266	00000000	Floor 3	
208	16		Floor 9	267	00000000	Floor 4	
209	18		Floor 10	268	00000000	Floor 5	
210	20		Floor 11	269	00000000	Floor 6	
211	22		Floor 12	270	00000000	Floor 7	
212	24		Floor 13	271	00000000	Floor 8	
213	26		Floor 14	272	00000000	Floor 9	
214	28		Floor 15	273	00000000	Floor 10	
215	30		Floor 16	274	00000000	Floor 11	
216	32		Floor 17	275	00000000	Floor 12	
217	34		Floor 18	276	00000000	Floor 13	
218	36		Floor 19	277	00000000	Floor 14	
219	38		Floor 20	278	00000000	Floor 15	
220	40		Floor 21	279	00000000	Floor 16	
221	42		Floor 22	280	00000000	Floor 17	
222	44		Floor 23	281	00000000	Floor 18	
223	46		Floor 24	282	00000000	Floor 19	
224	48		Floor 25	283	00000000	Floor 20	
225	50		Floor 26	284	00000000	Floor 21	
226	52		Floor 27	285	00000000	Floor 22	
227	54		Floor 28	286	00000000	Floor 23	

287	00000000	Floor 24	351	0	Floor 24
288	00000000	Floor 25	352	0	Floor 25
289	00000000	Floor 26	353	0	Floor 26
290	00000000	Floor 27	354	0	Floor 27
291	00000000	Floor 28	355	0	Floor 28
292	00000000	Floor 29	356	0	Floor 29
293	00000000	Floor 30	357	0	Floor 30
294	00000000	Floor 31	358	0	Floor 31
295	00000000	Floor 32	369	0	Floor 32

Slowdown highspeed

296	01	Floor 1
297	11	Floor 2
298	11	Floor 3
299	11	Floor 4
300	11	Floor 5
301	11	Floor 6
302	11	Floor 7
303	11	Floor 8
304	11	Floor 9
305	11	Floor 10
306	11	Floor 11
307	11	Floor 12
308	11	Floor 13
309	11	Floor 14
310	11	Floor 15
311	11	Floor 16
312	11	Floor 17
313	11	Floor 18
314	11	Floor 19
315	11	Floor 20
316	11	Floor 21
317	11	Floor 22
318	11	Floor 23
319	11	Floor 24
320	11	Floor 25
321	11	Floor 26
322	11	Floor 27
323	11	Floor 28
324	11	Floor 29
325	11	Floor 30
326	11	Floor 31
327	10	Floor 32

Slowdown medium speed

328	0	Floor 1
329	0	Floor 2
330	0	Floor 3
331	0	Floor 4
332	0	Floor 5
333	0	Floor 6
334	0	Floor 7
335	0	Floor 8
336	0	Floor 9
337	0	Floor 10
338	0	Floor 11
339	0	Floor 12
340	0	Floor 13
341	0	Floor 14
342	0	Floor 15
343	0	Floor 16
344	0	Floor 17
345	0	Floor 18
346	0	Floor 19
347	0	Floor 20
348	0	Floor 21
349	0	Floor 22
350	0	Floor 23

Side A Binary

810	00000000	Code for floor 1
811	00000001	Floor 2
812	00000010	Floor 3
813	00000011	Floor 4
814	00000100	Floor 5
815	00000101	Floor 6
816	00000110	Floor 7
817	00000111	Floor 8
818	00001000	Floor 9
819	00001001	Floor 10
820	00001010	Floor 11
821	00001011	Floor 12
822	00001100	Floor 13
823	00001101	Floor 14
824	00001110	Floor 15
825	00001111	Floor 16
826	00010000	Floor 17
827	00010001	Floor 18
828	00010010	Floor 19
829	00010011	Floor 20
830	00010100	Floor 21
831	00010101	Floor 22
832	00010110	Floor 23
833	00010111	Floor 24
834	00011000	Floor 25
835	00011001	Floor 26
836	00011010	Floor 27
837	00011011	Floor 28
838	00011100	Floor 29
839	00011101	Floor 30
840	00011110	Floor 31
841	00011111	Floor 32

Side B Binary

842	00100000	Code for floor 1
843	00100001	Floor 2
844	00100010	Floor 3
845	00100011	Floor 4
846	00100100	Floor 5
847	00100101	Floor 6
848	00100110	Floor 7
849	00100111	Floor 8
840	00101000	Floor 9
851	00101001	Floor 10
852	00101010	Floor 11
853	00101011	Floor 12
854	00101100	Floor 13
855	00101101	Floor 14
856	00101110	Floor 15
857	00101111	Floor 16
858	00110000	Floor 17
859	00110001	Floor 18
850	00110010	Floor 19
861	00110011	Floor 20
862	00110100	Floor 21
863	00110101	Floor 22
864	00110110	Floor 23
865	00110111	Floor 24
866	00111000	Floor 25
867	00111001	Floor 26
868	00111010	Floor 27
869	00111011	Floor 28
860	00111100	Floor 29
871	00111101	Floor 30
872	00111110	Floor 31
873	00111111	Floor 32

Side A Text

874	1	Floor 1
875	2	Floor 2
876	3	Floor 3
877	4	Floor 4
878	5	Floor 5
879	6	Floor 6
880	7	Floor 7
881	8	Floor 8
882	9	Floor 9
883	10	Floor 10
884	11	Floor 11
885	12	Floor 12
886	13	Floor 13
887	14	Floor 14
888	15	Floor 15
889	16	Floor 16
890	17	Floor 17
891	18	Floor 18
892	19	Floor 19
893	20	Floor 20
894	21	Floor 21
895	22	Floor 22
896	23	Floor 23
897	24	Floor 24
898	25	Floor 25
899	26	Floor 26
900	27	Floor 27
901	28	Floor 28
902	29	Floor 29
903	30	Floor 30
904	31	Floor 31
905	32	Floor 32

Side B

906	1	Floor 1
907	2	Floor 2
908	3	Floor 3
909	4	Floor 4
910	5	Floor 5
911	6	Floor 6
912	7	Floor 7
913	8	Floor 8
914	9	Floor 9
915	10	Floor 10
916	11	Floor 11
917	12	Floor 12
918	13	Floor 13
919	14	Floor 14
920	15	Floor 15
921	16	Floor 16
922	17	Floor 17
923	18	Floor 18
924	19	Floor 19
925	20	Floor 20
926	21	Floor 21
927	22	Floor 22
928	23	Floor 23
929	24	Floor 24
930	25	Floor 25
931	26	Floor 26
932	27	Plan 27
933	28	Plan 28
934	29	Plan 29
935	30	Plan 30
936	31	Plan 31
937	32	Plan 32

S3-DF03		
$\begin{aligned} & 940 \\ & 941 \end{aligned}$	Load	Load text
	Lift off	Lift off text
942	Font size	Font size
		Small font
		Big font
943	Overload	Loadmessage
		Overload Fulload
944	Fireservice	Firealarm text
945	Out of order	Out of order text
946	Powerfail	Powerfail text
947	Priority	Priority text

Ports

KR01

S1	MP
S2	ML
S3	DC
S4	None
S5	None
IP1	None
IP2	None
T1	EF1
T2	None
T3	None
RE1	Vo
RE2	V1
RE3	V2
RE4	V3
RE5	V4
RE6	V5
RE7	V6
RE8	V7
RE9	None
RE10	None
RE11	OLA
RE12	CLA
RE13	RC

UD03.1

P1	PD
P2	PU
P3	LD
P4	LU
111	MT
112	CC
113	OL
114	DOLA1
115	DOLA2
116	None
117	None
118	None
011	D1A
012	D2A
013	D3A
O14	D4A
015	D5A
016	D6A
017	D7A
018	D8A
B11	C1A
B12	C2A
B13	C3A
B14	C4A
B15	C5A

B16	C6A
B17	C7A
B18	C8A
B21	U1A
B22	D2A
B23	D3A
B24	D4A
B25	D5A
B26	D6A
B27	D7A
B28	D8A
B31	None
B32	None
B33	None
B34	None
B35	None
B36	None
B37	None
B38	None
UD03	
111	None
112	None
113	None
114	None
115	None
116	None
117	None
118	None
011	None
012	None
013	None
014	None
015	None
016	None
017	None
018	None
B11	None
B12	None
B13	None
B14	None
B15	None
B16	None
B17	None
B18	None
B21	None
B22	None
B23	None
B24	None
B25	None
B26	None
B27	None
B28	None
B31	None
B32	None
B33	None
B34	None
B35	None
B36	None
B37	None
B38	None
S3-IO8 Node	
Nodenumber:	
B11	None
B12	None
B13	None

Node number:			S4-PB05		
SW1	None				
SW2	None		Node	number:	
SW3	None		SW1	None	
SW4	None		SW2	None	
SW5	None		SW3	None	
SW6	None		SW4	None	
SW7	None		SW5	None	
SW8	None		SW6	None	
			SW7	None	
S4-PB05			SW8	None	
Node number:			S4-PB05		
SW1	None		Node number:		
SW2	None				
SW3	None		SW1	None	
SW4	None		SW2	None	
SW5	None		SW3	None	
SW6	None		SW4	None	
SW7	None		SW5	None	
SW8	None		SW6	None	
			SW7	None	
S4-PB05			SW8	None	
Node number:			S4-PB05		
SW1	None		Node number:		
SW2	None				
SW3	None		SW1	None	
SW4	None		SW2	None	
SW5	None		SW3	None	
SW6	None		SW4	None	
SW7	None		SW5	None	
SW8	None		SW6	None	
			SW7	None	
S4-PB05			SW8	None	
Node number:			S4-PB05		
SW1	None		Node number:		
SW2	None				
SW3	None		SW1	None	
SW4	None		SW2	None	
SW5	None		SW3	None	
SW6	None		SW4	None	
SW7	None		SW5	None	
SW8	None		SW6	None	
			SW7	None	
S4-PB05			SW8	None	
Node number:			S4-PB05		
SW1	None		Node number:		
SW2	None				
SW3	None		SW1	None	
SW4	None		SW2	None	
SW5	None		SW3	None	
SW6	None		SW4	None	
SW7	None		SW5	None	
SW8	None		SW6	None	
			SW7	None	
S4-PB05			SW8	None	
Node number:			S4-PB05		
SW1 None			Node number:		
SW2	None				
SW3	None		SW1	None	
SW4	None		SW2	None	
SW5	None		SW3	None	
SW6	None		SW4	None	
SW7	None		SW5	None	
SW8	None		SW6	None	
			SW7	None	

SW8 None	
S4-PB05	
Node number:	
SW1 None	\square
SW2 None	\square
SW3 None	\square
SW4 None	\square
SW5 None	\square
SW6 None	\square
SW7 None	\square
SW8 None	\square

S4-PB05

Node number:		
SW1	None	\square
SW2	None	\square
SW3	None	\square
SW4	None	\square
SW5	None	\square
SW6	None	\square
SW7	None	\square
SW8	None	\square

S4-PB05

Node number:		
SW1	None	\square
SW2	None	\square
SW3	None	\square
SW4	None	\square
SW5	None	\square
SW6	None	\square
SW7	None	\square
SW8	None	\square

S4-PB05

Node number:		
SW1	None	\square
SW2	None	\square
SW3	None	\square
SW4	None	\square
SW5	None	\square
SW6	None	\square
SW7	None	\square
SW8	None	\square

S4-PB05

Node number:		
SW1	None	\square
SW2	None	\square
SW3	None	\square
SW4	None	\square
SW5	None	\square
SW6	None	\square
SW7	None	\square
SW8	None	\square

S4-PB05

Node number:		
SW1	None	\square
SW2	None	\square
SW3	None	\square

24.1
24.2
24.3 Mechanics

The system is tested to IEC68-2-6, 27, 28, 29 with F6 as the reference.

24.4 Environmental Requirements

Pollution degree: III
Temperature: $\quad 0-65^{\circ} \mathrm{C}$, non-condensing

24.5 Standards

EMC	EN12015 Emission	
	Airborne interference:	30-1000 MHz - class B
	Line-borne:	0.15-30 MHz - class B
	EN12016 Immunity	
	EN61000-4-2 ESD	
	Air discharge:	15kV
	Contact discharge:	8 kV
	EN61000-4-3 Irradiated radio frequency magnetic field	
Frequency:	$27-500 \mathrm{MHz}$, GSM, NMT	
	Field strength:	10V/m, (modulation for
	EN61000-4-4 Line-borne interference	
	Power:	4 kV
	Signal lines	4kV
	EN61000-4-11 Voltage drops	
	Reduction:	30\%/60\%
	Duration:	$10 \mathrm{~ms} / 100 \mathrm{~ms}$
	EN61000-4-11 Voltage interruption	
	Reduction:	>95\%
	Duration:	5000 ms
Lift:	EN81-1 Line lift	
	EN81-2 Hydraulic lift	
	IEC 68-2-1/2 0-65 ${ }^{\circ} \mathrm{C}$	
Mechanics:	IEC-68-2-6 Vibration	
	Frequency range:	$10-55 \mathrm{~Hz}$
	Amplitude:	0.35 mm

	Number of axes:	3 at right angles to each other
	Duration:	20 double sweeps per axis
	IEC-68-2-27 Half sine	
	Pulse form:	Half sine
	Acceleration:	30 g
	Pulse length:	11 ms
	Number of axes:	3 at right angles to each other
	Number of pulses:	3 positive and 3 negative per axis
	IEC-68-2-29 partial vibration	
	Pulse form:	Half sine
	Acceleration:	15 g
	Pulse length:	11 ms
	Number of axes:	3 at right angles to each other
	Number of pulses:	1 positive and 1 negative per axis
	IEC-68-2-29 repeated vibratio	
	Pulse form:	Half sine
	Acceleration:	10 g
	Pulse length:	16 ms
	Number of axes:	3 at right angles to each other
	Number of pulses:	1000 positive and 1000 negative per axis
	Shock frequency:	2 pulses per second
Sample card:	IEC664 insulation distance	
Creep distance:	8 mm between contrary voltag	es, corresponds to double insulation in 230VAC circuit
Air gap:	5.5 mm between contrary volta	ages, corresponds to double insulation in 230VAC circuit
Encapsulation:	All output relay contacts fulfil IP20 protection against conta	the requirement for double insulation between the relays at rated voltage. t

24.6

Power Supply

Power supply:	230VAC 3-phase with/without phase monitor
	400VAC 3-phase with/without phase monitor
	230VAC single phase without phase monitor
Power:	Own consumption $P_{\max }=10 \mathrm{VA}$

24.7 Data Inputs

Ix, Bx, Px, Tx:

Current:	$\mathrm{I}_{\text {in }}=6.7 \mathrm{~mA}$ @ 24VDC
Voltage:	$\mathrm{U}_{\mathrm{H}}=8.3 \mathrm{~V}$ (typical)

IPx:
Current: $\quad \mathrm{I}_{\text {in }}=6.7 \mathrm{~mA} @ 24 \mathrm{VDC}$
Voltage: $\quad U_{\mathrm{H}}=8 \mathrm{~V}$ (typical)
Sx:
Current: $\quad \mathrm{I}_{\mathrm{in}}=5.2 \mathrm{~mA} @ 230 \mathrm{VDC}$
Voltage: $\quad \mathrm{U}_{\mathrm{H}}=130 \mathrm{~V}$ (typical)
$\mathrm{U}_{\mathrm{L}}=70 \mathrm{~V}$ (typical)

24.8 Data Outputs

24VDC:

Current:	$\mathrm{I}_{\max }=3 \mathrm{~A}$, short term, short-circuit-protected
	$\mathrm{I}_{\max }=\mathrm{ca} 2 \mathrm{~A}$, continuous temperature-dependent
$\mathrm{Bx}:$	
Current:	$\mathrm{I}_{\max }=170 \mathrm{~mA}$, short-circuit-protected
Power:	$\mathrm{P}_{\max }=4 \mathrm{~W}$
RE1-RE12, RE15, RE16, RE17	
Voltage:	$\mathrm{U}_{\max }=230 \mathrm{~V}$
Power:	$\mathrm{P}_{\max }=2000 \mathrm{VA}$

RE13	
Current:	$\mathrm{I}_{\max }=10 \mathrm{~A}$
Voltage:	$\mathrm{U}_{\max }=230 \mathrm{~V}$
Power:	$\mathrm{P}_{\max }=2000 \mathrm{VA}$
RE14:1-2	$\mathrm{I}_{\max }=8 \mathrm{~A}$
Current:	$\mathrm{U}_{\max }=230 \mathrm{~V}$
Voltage:	$\mathrm{P}_{\max }=2000 \mathrm{VA}$
Power:	

24.9 Dimensions

Width x height:	Base card $296 \mathrm{~mm} \times 210 \mathrm{~mm}+$ space for connectors	
Depth:	Without front panel:	approx 46 mm (does not fulfil IP20 when removed)
	With front panel:	approx 60 mm
	with extra IO:	approx 77 mm

Send Lift 51
Service Counter 25
Software 55
Specialtravels 29
Fireman Service 30
Fireservice 29
Landing off 29
Power Failure 30
Sending 29

Standards 74

Start Sequence 22
Supervision 28
System 53
Copy memory 54
Erase memory 54
Explore memory 54
Update memory 54

T

Telephone modem 78
Tools 50
Travelarrows 42
Type Description 54
Type Designation 5

U

Updating
Jumper Settings 10

Z

Zone System 32

26 Appendix

$26.1 \quad$ Telephone modem TD22

Setting of modem TD22 for 2400bps to telephone network:

SW1:	$1-4$	off
SW2:	$1-8$	off
SW3:	1	on
	2	off
	3	on
	$4-8$	off
SW4:	$1-2$	off
	3	on
	4	off
	$5-7$	on
	8	off
SW5:	1	on
	2	off
	3	on
	$4-8$	off

Address

P Dahl Elektronik
Gammagatan 1 43149 Mölndal Sweden

Telephone
+46 (0)31 3812100 Fax
+46 (0)31 3812101

Email

info@pdahl.se Webpage www.pdahl.se

